Cross-Classification Clustering: An Efficient Multi-Object Tracking Technique for 3-D Instance Segmentation in Connectomics

by   Yaron Meirovitch, et al.

Pixel-accurate tracking of objects is a key element in many computer vision applications, often solved by iterated individual object tracking or instance segmentation followed by object matching. Here we introduce cross-classification clustering (3C), a new technique that simultaneously tracks all objects in an image stack. The key idea in cross-classification is to efficiently turn a clustering problem into a classification problem by running a logarithmic number of independent classifications, letting the cross-labeling of these classifications uniquely classify each pixel to the object labels. We apply the 3C mechanism to achieve state-of-the-art accuracy in connectomics - nanoscale mapping of the brain from electron microscopy volumes. Our reconstruction system introduces an order of magnitude scalability improvement over the best current methods for neuronal reconstruction, and can be seamlessly integrated within existing single-object tracking methods like Google's flood-filling networks to improve their performance. This scalability is crucial for the real-world deployment of connectomics pipelines, as the best performing existing techniques require computing infrastructures that are beyond the reach of most labs. We believe 3C has valuable scalability implications in other domains that require pixel-accurate tracking of multiple objects in image stacks or video.


page 1

page 2

page 4

page 5

page 7


Linear Object Detection in Document Images using Multiple Object Tracking

Linear objects convey substantial information about document structure, ...

PointTrack++ for Effective Online Multi-Object Tracking and Segmentation

Multiple-object tracking and segmentation (MOTS) is a novel computer vis...

Associative Embedding: End-to-End Learning for Joint Detection and Grouping

We introduce associative embedding, a novel method for supervising convo...

Towards Annotation-free Instance Segmentation and Tracking with Adversarial Simulations

Quantitative analysis of microscope videos often requires instance segme...

Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast Contrastive Fusion

Instance segmentation in 3D is a challenging task due to the lack of lar...

A One Stop 3D Target Reconstruction and multilevel Segmentation Method

3D object reconstruction and multilevel segmentation are fundamental to ...

Visual Object Tracking: The Initialisation Problem

Model initialisation is an important component of object tracking. Track...

Please sign up or login with your details

Forgot password? Click here to reset