CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a Context Synergized Hyperbolic Network

03/02/2023
by   Sreyan Ghosh, et al.
0

The tremendous growth of social media users interacting in online conversations has also led to significant growth in hate speech. Most of the prior works focus on detecting explicit hate speech, which is overt and leverages hateful phrases, with very little work focusing on detecting hate speech that is implicit or denotes hatred through indirect or coded language. In this paper, we present CoSyn, a user- and conversational-context synergized network for detecting implicit hate speech in online conversation trees. CoSyn first models the user's personal historical and social context using a novel hyperbolic Fourier attention mechanism and hyperbolic graph convolution network. Next, we jointly model the user's personal context and the conversational context using a novel context interaction mechanism in the hyperbolic space that clearly captures the interplay between the two and makes independent assessments on the amounts of information to be retrieved from both contexts. CoSyn performs all operations in the hyperbolic space to account for the scale-free dynamics of social media. We demonstrate the effectiveness of CoSyn both qualitatively and quantitatively on an open-source hate speech dataset with Twitter conversations and show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 8.15

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset