Continuous 3D Label Stereo Matching using Local Expansion Moves

03/28/2016 ∙ by Tatsunori Taniai, et al. ∙ 0

We present an accurate stereo matching method using local expansion moves based on graph cuts. This new move-making scheme is used to efficiently infer per-pixel 3D plane labels on a pairwise Markov random field (MRF) that effectively combines recently proposed slanted patch matching and curvature regularization terms. The local expansion moves are presented as many alpha-expansions defined for small grid regions. The local expansion moves extend traditional expansion moves by two ways: localization and spatial propagation. By localization, we use different candidate alpha-labels according to the locations of local alpha-expansions. By spatial propagation, we design our local alpha-expansions to propagate currently assigned labels for nearby regions. With this localization and spatial propagation, our method can efficiently infer MRF models with a continuous label space using randomized search. Our method has several advantages over previous approaches that are based on fusion moves or belief propagation; it produces submodular moves deriving a subproblem optimality; it helps find good, smooth, piecewise linear disparity maps; it is suitable for parallelization; it can use cost-volume filtering techniques for accelerating the matching cost computations. Even using a simple pairwise MRF, our method is shown to have best performance in the Middlebury stereo benchmark V2 and V3.



There are no comments yet.


page 2

page 5

page 7

page 10

page 11

page 13

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.