Concurrent Flow-Based Localization and Mapping in Time-Invariant Flow Fields

10/15/2019
by   Zhuoyuan Song, et al.
0

We present the concept of concurrent flow-based localization and mapping (FLAM) for autonomous field robots navigating within background flows. Different from the classical simultaneous localization and mapping (SLAM) problem, where the robot interacts with discrete features, FLAM utilizes the continuous flow fields as navigation references for mobile robots and provides flow field mapping capability with in-situ flow velocity observations. This approach is of importance to underwater vehicles in mid-depth oceans or aerial vehicles in GPS-denied atmospheric circulations. This article introduces the formulation of FLAM as a full SLAM solution motivated by the feature-based GraphSLAM framework. The performance of FLAM was demonstrated through simulation within artificial flow fields that represent typical geophysical circulation phenomena: a steady single-gyre flow field and a double-gyre flow field with unsteady turbulent perturbations. The results indicate that FLAM provides significant improvements in the robots' localization accuracy and a consistent approximation of the background flow field. It is also shown that FLAM leads to smooth robot trajectory estimates.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset