Computing foaming flows across scales: from breaking waves to microfluidics

03/02/2021
by   Petr Karnakov, et al.
0

Crashing ocean waves, cappuccino froths and microfluidic bubble crystals are examples of foamy flows. Foamy flows are critical in numerous natural and industrial processes and remain notoriously difficult to compute as they involve coupled, multiscale physical processes. Computations need to resolve the interactions of the bubbles with the fluid and complex boundaries, while capturing the drainage and rupture of the microscopic liquid films at their interface. We present a novel multilayer simulation framework (Multi-VOF) that advances the state of the art in simulation capabilities of foamy flows. The framework introduces a novel scheme for the distinct handling of multiple neighboring bubbles and a new regularization method that produces sharp interfaces and removes spurious fragments. Multi-VOF is verified and validated with experimental results and complemented with open source, efficient scalable software. We demonstrate capturing of bubble crystalline structures in realistic microfluidics devices and foamy flows involving tens of thousands of bubbles in a waterfall. The present multilayer framework extends the classical volume-of-fluid methodology and allows for unprecedented large scale, predictive simulations of flows with multiple interfaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset