Computational General Relativity in the Wolfram Language using Gravitas I: Symbolic and Analytic Computation
We introduce a new, open-source computational general relativity framework for the Wolfram Language called Gravitas, which boasts a number of novel and distinctive features as compared to the many pre-existing computational and numerical relativity frameworks currently available within the open-source community. These include, but are not limited to: seamless integration of its powerful symbolic and numerical subsystems, and, by extension, seamless transition between analytic/continuous representations and numerical/discrete representations of arbitrary spacetime geometries; highly modular, general and extensible representations of spacetime geometries, spacetime topologies, gauge conditions, coordinate systems, matter fields, evolution equations and initial data; ability to set up and run complex numerical relativity simulations, and to perform 2D and 3D visualizations, symbolic computations and numerical analysis (including the extraction of gravitational wave signals) on the resulting data, all from within a single notebook environment; and a totally-unstructured adaptive refinement scheme based on hypergraph rewriting, allowing for exceedingly efficient discretization and numerical evolution of Cauchy initial data for a wide range of challenging computational problems involving strong relativistic field dynamics. In this first in a series of two articles covering the framework, we focus on the design and capabilities of Gravitas's symbolic subsystem, including its general and flexible handling of arbitrary geometries parametrized by arbitrary curvilinear coordinate systems (along with an in-built library of standard metrics and coordinate conditions), as well as its various high-level tensor calculus and differential geometry features. We proceed to show how this subsystem can be used to solve the Einstein field equations both analytically and numerically.
READ FULL TEXT