Complex ratio masking for singing voice separation

11/03/2020 ∙ by Yixuan Zhang, et al. ∙ 0

Music source separation is important for applications such as karaoke and remixing. Much of previous research focuses on estimating short-time Fourier transform (STFT) magnitude and discarding phase information. We observe that, for singing voice separation, phase can make considerable improvement in separation quality. This paper proposes a complex ratio masking method for voice and accompaniment separation. The proposed method employs DenseUNet with self attention to estimate the real and imaginary components of STFT for each sound source. A simple ensemble technique is introduced to further improve separation performance. Evaluation results demonstrate that the proposed method outperforms recent state-of-the-art models for both separated voice and accompaniment.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.