Comparative Analysis of Machine Learning Approaches to Analyze and Predict the Covid-19 Outbreak

by   Muhammad Naeem, et al.

Background. Forecasting the time of forthcoming pandemic reduces the impact of diseases by taking precautionary steps such as public health messaging and raising the consciousness of doctors. With the continuous and rapid increase in the cumulative incidence of COVID-19, statistical and outbreak prediction models including various machine learning (ML) models are being used by the research community to track and predict the trend of the epidemic, and also in developing appropriate strategies to combat and manage its spread. Methods. In this paper, we present a comparative analysis of various ML approaches including Support Vector Machine, Random Forest, K-Nearest Neighbor and Artificial Neural Network in predicting the COVID-19 outbreak in the epidemiological domain. We first apply the autoregressive distributed lag (ARDL) method to identify and model the short and long-run relationships of the time-series COVID-19 datasets. That is, we determine the lags between a response variable and its respective explanatory time series variables as independent variables. Then, the resulting significant variables concerning their lags are used in the regression model selected by the ARDL for predicting and forecasting the trend of the epidemic. Results. Statistical measures i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for model accuracy. The values of MAPE for the best selected models for confirmed, recovered and deaths cases are 0.407, 0.094 and 0.124 respectively, which falls under the category of highly accurate forecasts. In addition, we computed fifteen days ahead forecast for the daily deaths, recover, and confirm patients and the cases fluctuated across time in all aspects. Besides, the results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.


page 11

page 13

page 15

page 16

page 17

page 18

page 19

page 20


Temporal Deep Learning Architecture for Prediction of COVID-19 Cases in India

To combat the recent coronavirus disease 2019 (COVID-19), academician an...

From policy to prediction: Forecasting COVID-19 dynamics under imperfect vaccination

Understanding the joint impact of vaccination and non-pharmaceutical int...

Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil

The new Coronavirus (COVID-19) is an emerging disease responsible for in...

A comparative study of statistical and machine learning models on near-real-time daily emissions prediction

The rapid ascent in carbon dioxide emissions is a major cause of global ...

Weather impact on daily cases of COVID-19 in Saudi Arabia using machine learning

COVID-19 was announced by the World Health Organisation (WHO) as a globa...

Forecasting the vaccine uptake rate: An infodemiological study in the US

A year following the initial COVID-19 outbreak in China, many countries ...

Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables

The novel coronavirus disease (COVID-19) is a public health problem once...

Please sign up or login with your details

Forgot password? Click here to reset