CoCalc as a Learning Tool for Neural Network Simulation in the Special Course "Foundations of Mathematic Informatics"

07/02/2018 ∙ by Oksana Markova, et al. ∙ 0

The role of neural network modeling in the learning content of the special course "Foundations of Mathematical Informatics" was discussed. The course was developed for the students of technical universities - future IT-specialists and directed to breaking the gap between theoretic computer science and it's applied applications: software, system and computing engineering. CoCalc was justified as a learning tool of mathematical informatics in general and neural network modeling in particular. The elements of technique of using CoCalc at studying topic "Neural network and pattern recognition" of the special course "Foundations of Mathematic Informatics" are shown. The program code was presented in a CoffeeScript language, which implements the basic components of artificial neural network: neurons, synaptic connections, functions of activations (tangential, sigmoid, stepped) and their derivatives, methods of calculating the network's weights, etc. The features of the Kolmogorov-Arnold representation theorem application were discussed for determination the architecture of multilayer neural networks. The implementation of the disjunctive logical element and approximation of an arbitrary function using a three-layer neural network were given as an examples. According to the simulation results, a conclusion was made as for the limits of the use of constructed networks, in which they retain their adequacy. The framework topics of individual research of the artificial neural networks is proposed.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.