Cause and Effect: Concept-based Explanation of Neural Networks

05/14/2021
by   Mohammad Nokhbeh Zaeem, et al.
156

In many scenarios, human decisions are explained based on some high-level concepts. In this work, we take a step in the interpretability of neural networks by examining their internal representation or neuron's activations against concepts. A concept is characterized by a set of samples that have specific features in common. We propose a framework to check the existence of a causal relationship between a concept (or its negation) and task classes. While the previous methods focus on the importance of a concept to a task class, we go further and introduce four measures to quantitatively determine the order of causality. Through experiments, we demonstrate the effectiveness of the proposed method in explaining the relationship between a concept and the predictive behaviour of a neural network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset