Causal Reasoning of Entities and Events in Procedural Texts
Entities and events have long been regarded as the crux of machine reasoning. Specifically, procedural texts have received increasing attention due to the dynamic nature of involved entities and events. Existing work has exclusively focused on entity state tracking (e.g., the temperature of a pan) or counterfactual event reasoning (e.g., how likely am I to burn myself by touching the pan), while these two tasks are tightly intertwined. In this work, we propose CREPE, the first benchmark on causal reasoning about event plausibility based on entity states. We experiment with strong large language models and show that most models including GPT3 perform close to chance of .30 F1, lagging far behind the human performance of .87 F1. Inspired by the finding that structured representations such as programming languages benefits event reasoning as a prompt to code language models such as Codex, we creatively inject the causal relations between entities and events through intermediate variables and boost the performance to .67 to .72 F1. Our proposed event representation not only allows for knowledge injection, but also marks the first successful attempt of chain-of-thought reasoning with code language models.
READ FULL TEXT