Causal Feature Selection via Orthogonal Search

by   Anant Raj, et al.

The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of models across different experimental conditions for detecting direct causal links. However, these approaches generally do not scale well with the number of explanatory variables, are difficult to extend to nonlinear relationships, and require data across different experiments. Inspired by Debiased machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the direct causal parent of the response. We propose an algorithm that works for purely observational data, while also offering theoretical guarantees, including the case of partially nonlinear relationships. Requiring only one estimation for each variable, we can apply our approach even to large graphs, demonstrating significant improvements compared to established approaches.



There are no comments yet.


page 1

page 2

page 3

page 4


Orthogonal Structure Search for Efficient Causal Discovery from Observational Data

The problem of inferring the direct causal parents of a response variabl...

Causal network learning with non-invertible functional relationships

Discovery of causal relationships from observational data is an importan...

Causal Markov Boundaries

Feature selection is an important problem in machine learning, which aim...

Nonparametric Causal Feature Selection for Spatiotemporal Risk Mapping of Malaria Incidence in Madagascar

Modern disease mapping uses high resolution environmental and socioecono...

Causality and Robust Optimization

A decision-maker must consider cofounding bias when attempting to apply ...

Multi-label Causal Variable Discovery: Learning Common Causal Variables and Label-specific Causal Variables

Causal variables in Markov boundary (MB) have been widely applied in ext...

Estimating a Causal Order among Groups of Variables in Linear Models

The machine learning community has recently devoted much attention to th...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.