CatGAN: Coupled Adversarial Transfer for Domain Generation

11/24/2017
by   Shanshan Wang, et al.
0

This paper introduces a Coupled adversarial transfer GAN (CatGAN), an efficient solution to domain alignment. The basic principles of CatGAN focus on the domain generation strategy for adaptation which is motivated by the generative adversarial net (GAN) and the adversarial discriminative domain adaptation (ADDA). CatGAN is structured by shallow multilayer perceptrons (MLPs) for adversarial domain adaptation. The CatGAN comprises of two slim and symmetric subnetworks, which then formulates a coupled adversarial learning framework. With such symmetry, the input images from source/target domain can be fed into the MLP network for target/source domain generation, supervised by the coupled discriminators for confrontation. Notablely, each generator contains GAN loss and domain loss to guarantee the simple network work well. The content fidelity term aims at preserving the domain specific knowledge during generation. Another finding is that the class-wise CatGAN is an effective alternative to conditional GAN without label constraint in generative learning. We show experimentally that the proposed model achieves competitive performance with state-of-the art approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro