CAT: CRF-based ASR Toolkit

11/20/2019
by   Keyu An, et al.
0

In this paper, we present a new open source toolkit for automatic speech recognition (ASR), named CAT (CRF-based ASR Toolkit). A key feature of CAT is discriminative training in the framework of conditional random field (CRF), particularly with connectionist temporal classification (CTC) inspired state topology. CAT contains a full-fledged implementation of CTC-CRF and provides a complete workflow for CRF-based end-to-end speech recognition. Evaluation results on Chinese and English benchmarks such as Switchboard and Aishell show that CAT obtains the state-of-the-art results among existing end-to-end models with less parameters, and is competitive compared with the hybrid DNN-HMM models. Towards flexibility, we show that i-vector based speaker-adapted recognition and latency control mechanism can be explored easily and effectively in CAT. We hope CAT, especially the CRF-based framework and software, will be of broad interest to the community, and can be further explored and improved.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset