Capsule Deep Neural Network for Recognition of Historical Graffiti Handwriting

09/11/2018
by   Nikita Gordienko, et al.
0

Automatic recognition of the historical letters (XI-XVIII centuries) carved on the stoned walls of St.Sophia cathedral in Kyiv (Ukraine) was demonstrated by means of capsule deep learning neural network. It was applied to the image dataset of the carved Glagolitic and Cyrillic letters (CGCL), which was assembled and pre-processed recently for recognition and prediction by machine learning methods (https://www.kaggle.com/yoctoman/graffiti-st-sophia-cathedral-kyiv). CGCL dataset contains >4000 images for glyphs of 34 letters which are hardly recognized by experts even in contrast to notMNIST dataset with the better images of 10 letters taken from different fonts. Despite the much worse quality of CGCL dataset and extremely low number of samples (in comparison to notMNIST dataset) the capsule network model demonstrated much better results than the previously used convolutional neural network (CNN). The validation accuracy (and validation loss) was higher (lower) for capsule network model than for CNN without data augmentation even. The area under curve (AUC) values for receiver operating characteristic (ROC) were also higher for the capsule network model than for CNN model: 0.88-0.93 (capsule network) and 0.50 (CNN) without data augmentation, 0.91-0.95 (capsule network) and 0.51 (CNN) with lossless data augmentation, and similar results of 0.91-0.93 (capsule network) and 0.9 (CNN) in the regime of lossless data augmentation only. The confusion matrixes were much better for capsule network than for CNN model and gave the much lower type I (false positive) and type II (false negative) values in all three regimes of data augmentation. These results supports the previous claims that capsule-like networks allow to reduce error rates not only on MNIST digit dataset, but on the other notMNIST letter dataset and the more complex CGCL handwriting graffiti letter dataset also.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset