Calculating Semantic Similarity between Academic Articles using Topic Event and Ontology

11/30/2017
by   Ming Liu, et al.
0

Determining semantic similarity between academic documents is crucial to many tasks such as plagiarism detection, automatic technical survey and semantic search. Current studies mostly focus on semantic similarity between concepts, sentences and short text fragments. However, document-level semantic matching is still based on statistical information in surface level, neglecting article structures and global semantic meanings, which may cause the deviation in document understanding. In this paper, we focus on the document-level semantic similarity issue for academic literatures with a novel method. We represent academic articles with topic events that utilize multiple information profiles, such as research purposes, methodologies and domains to integrally describe the research work, and calculate the similarity between topic events based on the domain ontology to acquire the semantic similarity between articles. Experiments show that our approach achieves significant performance compared to state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro