Bucketed PCA Neural Networks with Neurons Mirroring Signals

08/02/2021
by   Jackie Shen, et al.
0

The bucketed PCA neural network (PCA-NN) with transforms is developed here in an effort to benchmark deep neural networks (DNN's), for problems on supervised classification. Most classical PCA models apply PCA to the entire training data set to establish a reductive representation and then employ non-network tools such as high-order polynomial classifiers. In contrast, the bucketed PCA-NN applies PCA to individual buckets which are constructed in two consecutive phases, as well as retains a genuine architecture of a neural network. This facilitates a fair apple-to-apple comparison to DNN's, esp. to reveal that a major chunk of accuracy achieved by many impressive DNN's could possibly be explained by the bucketed PCA-NN (e.g., 96 as an example). Compared with most DNN's, the three building blocks of the bucketed PCA-NN are easier to comprehend conceptually - PCA, transforms, and bucketing for error correction. Furthermore, unlike the somewhat quasi-random neurons ubiquitously observed in DNN's, the PCA neurons resemble or mirror the input signals and are more straightforward to decipher as a result.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset