Brain Inspired Object Recognition System
This paper presents a new proposal of an efficient computational model of face and object recognition which uses cues from the distributed face and object recognition mechanism of the brain, and by gathering engineering equivalent of these cues from existing literature. Three distinct and widely used features, Histogram of Oriented Gradients, Local Binary Patterns, and Principal components extracted from target images are used in a manner which is simple, and yet effective. Our model uses multi-layer perceptrons (MLP) to classify these three features and fuse them at the decision level using sum rule. A computational theory is first developed by using concepts from the information processing mechanism of the brain. Extensive experiments are carried out using fifteen publicly available datasets to validate the performance of our proposed model in recognizing faces and objects with extreme variation of illumination, pose angle, expression, and background. Results obtained are extremely promising when compared with other face and object recognition algorithms including CNN and deep learning based methods. This highlights that simple computational processes, if clubbed properly, can produce competing performance with best algorithms.
READ FULL TEXT