Boundary and Context Aware Training for CIF-based Non-Autoregressive End-to-end ASR
Continuous integrate-and-fire (CIF) based models, which use a soft and monotonic alignment mechanism, have been well applied in non-autoregressive (NAR) speech recognition and achieved competitive performance compared with other NAR methods. However, such an alignment learning strategy may also result in inaccurate acoustic boundary estimation and deceleration in convergence speed. To eliminate these drawbacks and improve performance further, we incorporate an additional connectionist temporal classification (CTC) based alignment loss and a contextual decoder into the CIF-based NAR model. Specifically, we use the CTC spike information to guide the leaning of acoustic boundary and adopt a new contextual decoder to capture the linguistic dependencies within a sentence in the conventional CIF model. Besides, a recently proposed Conformer architecture is also employed to model both local and global acoustic dependencies. Experiments on the open-source Mandarin corpora AISHELL-1 show that the proposed method achieves a comparable character error rate (CER) of 4.9 state-of-the-art autoregressive (AR) Conformer model.
READ FULL TEXT