Bi-objective Optimisation of Data-parallel Applications on Heterogeneous Platforms for Performance and Energy via Workload Distribution

07/09/2019 ∙ by Hamidreza Khaleghzadeh, et al. ∙ 0

Performance and energy are the two most important objectives for optimisation on modern parallel platforms. Latest research demonstrated the importance of workload distribution as a decision variable in the bi-objective optimisation for performance and energy on homogeneous multicore clusters. We show in this work that bi-objective optimisation for performance and energy on heterogeneous processors results in a large number of Pareto-optimal optimal solutions (workload distributions) even in the simple case of linear performance and energy profiles. We then study performance and energy profiles of real-life data-parallel applications and find that their shapes are non-linear, complex and non-smooth. We, therefore, propose an efficient and exact global optimisation algorithm, which takes as an input most general discrete performance and dynamic energy profiles of the heterogeneous processors and solves the bi-objective optimisation problem. The algorithm is also used as a building block to solve the bi-objective optimisation problem for performance and total energy. We also propose a novel methodology to build discrete dynamic energy profiles of individual computing devices, which are input to the algorithm. The methodology is based purely on system-level measurements and addresses the fundamental challenge of accurate component-level energy modelling of a hybrid data-parallel application running on a heterogeneous platform integrating CPUs and accelerators. We experimentally validate the proposed method using two data-parallel applications, matrix multiplication and 2D fast Fourier transform (2D-FFT).

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.