Benchmarking Scientific Image Forgery Detectors

05/26/2021
by   João P. Cardenuto, et al.
29

The scientific image integrity area presents a challenging research bottleneck, the lack of available datasets to design and evaluate forensic techniques. Its data sensitivity creates a legal hurdle that prevents one to rely on real tampered cases to build any sort of accessible forensic benchmark. To mitigate this bottleneck, we present an extendable open-source library that reproduces the most common image forgery operations reported by the research integrity community: duplication, retouching, and cleaning. Using this library and realistic scientific images, we create a large scientific forgery image benchmark (39,423 images) with an enriched ground-truth. In addition, concerned about the high number of retracted papers due to image duplication, this work evaluates the state-of-the-art copy-move detection methods in the proposed dataset, using a new metric that asserts consistent match detection between the source and the copied region. The dataset and source-code will be freely available upon acceptance of the paper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro