DeepAI AI Chat
Log In Sign Up

Bayesian Structure Learning by Recursive Bootstrap

by   Raanan Y. Rohekar, et al.

We address the problem of Bayesian structure learning for domains with hundreds of variables by employing non-parametric bootstrap, recursively. We propose a method that covers both model averaging and model selection in the same framework. The proposed method deals with the main weakness of constraint-based learning---sensitivity to errors in the independence tests---by a novel way of combining bootstrap with constraint-based learning. Essentially, we provide an algorithm for learning a tree, in which each node represents a scored CPDAG for a subset of variables and the level of the node corresponds to the maximal order of conditional independencies that are encoded in the graph. As higher order independencies are tested in deeper recursive calls, they benefit from more bootstrap samples, and therefore more resistant to the curse-of-dimensionality. Moreover, the re-use of stable low order independencies allows greater computational efficiency. We also provide an algorithm for sampling CPDAGs efficiently from their posterior given the learned tree. We empirically demonstrate that the proposed algorithm scales well to hundreds of variables, and learns better MAP models and more reliable causal relationships between variables, than other state-of-the-art-methods.


A Recursive Markov Blanket-Based Approach to Causal Structure Learning

One of the main approaches for causal structure learning is constraint-b...

Towards Characterising Bayesian Network Models under Selection

Real-life statistical samples are often plagued by selection bias, which...

Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias

We consider the problem of learning the causal MAG of a system from obse...

A Robust Independence Test for Constraint-Based Learning of Causal Structure

Constraint-based (CB) learning is a formalism for learning a causal netw...

Computing p-values of LiNGAM outputs via Multiscale Bootstrap

Structural equation models and Bayesian networks have been widely used t...

On Testing Whether an Embedded Bayesian Network Represents a Probability Model

Testing the validity of probabilistic models containing unmeasured (hidd...

Fast Exact Inference for Recursive Cardinality Models

Cardinality potentials are a generally useful class of high order potent...