Bayesian Hyperparameter Optimization with BoTorch, GPyTorch and Ax

12/11/2019 ∙ by Daniel T Chang, et al. ∙ 0

Deep learning models are full of hyperparameters, which are set manually before the learning process can start. To find the best configuration for these hyperparameters in such a high dimensional space, with time-consuming and expensive model training / validation, is not a trivial challenge. Bayesian optimization is a powerful tool for the joint optimization of hyperparameters, efficiently trading off exploration and exploitation of the hyperparameter space. In this paper, we discuss Bayesian hyperparameter optimization, including hyperparameter optimization, Bayesian optimization, and Gaussian processes. We also review BoTorch, GPyTorch and Ax, the new open-source frameworks that we use for Bayesian optimization, Gaussian process inference and adaptive experimentation, respectively. For experimentation, we apply Bayesian hyperparameter optimization, for optimizing group weights, to weighted group pooling, which couples unsupervised tiered graph autoencoders learning and supervised graph classification learning for molecular graphs. We find that Ax, BoTorch and GPyTorch together provide a simple-to-use but powerful framework for Bayesian hyperparameter optimization, using Ax's high-level API that constructs and runs a full optimization loop and returns the best hyperparameter configuration.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.