Bagging is an Optimal PAC Learner

12/05/2022
by   Kasper Green Larsen, et al.
0

Determining the optimal sample complexity of PAC learning in the realizable setting was a central open problem in learning theory for decades. Finally, the seminal work by Hanneke (2016) gave an algorithm with a provably optimal sample complexity. His algorithm is based on a careful and structured sub-sampling of the training data and then returning a majority vote among hypotheses trained on each of the sub-samples. While being a very exciting theoretical result, it has not had much impact in practice, in part due to inefficiency, since it constructs a polynomial number of sub-samples of the training data, each of linear size. In this work, we prove the surprising result that the practical and classic heuristic bagging (a.k.a. bootstrap aggregation), due to Breiman (1996), is in fact also an optimal PAC learner. Bagging pre-dates Hanneke's algorithm by twenty years and is taught in most undergraduate machine learning courses. Moreover, we show that it only requires a logarithmic number of sub-samples to reach optimality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset