Autonomous synthesis of metastable materials

01/19/2021
by   Sebastian Ament, et al.
9

Autonomous experimentation enabled by artificial intelligence (AI) offers a new paradigm for accelerating scientific discovery. Non-equilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery and development. The mapping of non-equilibrium synthesis phase diagrams has recently been accelerated via high throughput experimentation but still limits materials research because the parameter space is too vast to be exhaustively explored. We demonstrate accelerated synthesis and exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA). SARA integrates robotic materials synthesis and characterization along with a hierarchy of AI methods that efficiently reveal the structure of processing phase diagrams. SARA designs lateral gradient laser spike annealing (lg-LSA) experiments for parallel materials synthesis and employs optical spectroscopy to rapidly identify phase transitions. Efficient exploration of the multi-dimensional parameter space is achieved with nested active learning (AL) cycles built upon advanced machine learning models that incorporate the underlying physics of the experiments as well as end-to-end uncertainty quantification. With this, and the coordination of AL at multiple scales, SARA embodies AI harnessing of complex scientific tasks. We demonstrate its performance by autonomously mapping synthesis phase boundaries for the Bi_2O_3 system, leading to orders-of-magnitude acceleration in establishment of a synthesis phase diagram that includes conditions for kinetically stabilizing δ-Bi_2O_3 at room temperature, a critical development for electrochemical technologies such as solid oxide fuel cells.

READ FULL TEXT

page 4

page 7

page 8

research
11/15/2021

Physics in the Machine: Integrating Physical Knowledge in Autonomous Phase-Mapping

Application of artificial intelligence (AI), and more specifically machi...
research
06/03/2020

Autonomous Materials Discovery Driven by Gaussian Process Regression with Inhomogeneous Measurement Noise and Anisotropic Kernels

A majority of experimental disciplines face the challenge of exploring l...
research
08/15/2023

Probabilistic Phase Labeling and Lattice Refinement for Autonomous Material Research

X-ray diffraction (XRD) is an essential technique to determine a materia...
research
10/03/2016

Phase-Mapper: An AI Platform to Accelerate High Throughput Materials Discovery

High-Throughput materials discovery involves the rapid synthesis, measur...
research
06/11/2020

On-the-fly Closed-loop Autonomous Materials Discovery via Bayesian Active Learning

Active learning - the field of machine learning (ML) dedicated to optima...
research
06/17/2023

Human-In-the-Loop for Bayesian Autonomous Materials Phase Mapping

Autonomous experimentation (AE) combines machine learning and research h...
research
11/01/2020

Polymer Informatics: Current Status and Critical Next Steps

Artificial intelligence (AI) based approaches are beginning to impact se...

Please sign up or login with your details

Forgot password? Click here to reset