1 Introduction
Recently the digest (Dunning and Ertl, 2019)
has gained prominence as an efficient data structure for online estimation of quantiles of large data streams. The digest consists of a collection of weighted centroids on the real line, with the weight representing cluster size (the number of observations near the corresponding centroid). In comparison to other methods, the
digest is notable for its ability to have variable accuracy in different regions of quantile space. The accuracy is controlled by a scale function, which governs the permissible compression (expressed as a bound on cluster size, see (Dunning, 2019b)) as a function of the quantile . Using a linear scale function turns the digest into a dynamic version of a histogram with equalsized bins, but using logarithmic or (inverse) trigonometric functions allows the digest to achieve greater accuracy near the tails (i.e., near or ) and comparatively less accuracy near the median ().The capacity of the digest to operate online imposes a requirement on the scale function, namely that a collection of centroids compatible with a given scale function remains so when new samples are inserted. Since forming the ordered union of two digests may be described as a sequence of insertions from the viewpoint of either digest, meeting this requirement also implies digests can be merged to form a new one that inherits the accuracy bounds of its constituents and thus large datasets may digested in parallel (Dunning and Ertl, 2019, §2.5). For the wellknown scale functions, preservation of the constraint under insertion is proved in (Dunning, 2019a).
Motivation. All of the scale functions the author is aware of are symmetric about , and thus expend similar computational resources on those parts of the distribution near and those near . In practice there are scenarios in which one tail of the distribution carries considerably more excitement than the other. For example, in application performance monitoring, the latency of individual operations or execution paths is often distributed with significant positive skew, as the overwhelming majority of executions complete quickly and uneventfully, while a relatively small number of outlying executions exhibits greater variation. In practical terms, the difference between a 97th percentile and a 99th percentile operation execution is greater than the difference between a 3rd percentile and a 1st percentile execution, and so accuracy near is “worth more” than accuracy near . In (Ross, 2019b, esp. §3.2) we have described a tailbased sampling method for distributed traces that requires a compact device for approximating quantiles and ranks, and in this setting we would like to make finegrained distinctions near , whereas very little of our budget will be devoted to keeping execution traces near in any case.
A related context is monitoring service level objectives in distributed computing environments (Beyer et al., 2016, Ch. 4), (Sloss et al., 2017): it is common to treat upper quantiles of request latency as service level indicators (Beyer et al., 2016, Ch. 4), which may be implemented as a client querying a digest for a particular quantile value near (but not near ). While it may not be possible to enhance the resolution of a digest exactly in a neighborhood of a specified quantile (since insertions may shift a region of data for which only a coarse summary is available into a region in which greater accuracy is required), an asymmetric scale function allows one to strike a better balance between computational resources and accuracy (e.g., save computational resources without compromising the accuracy of the required estimate, or increase accuracy for the required estimate by using an asymmetric scale function with a larger parameter). Especially for highvolume endpoints over longer time windows, the asymmetric digests we propose here are a natural family of data structures on which to base approximate calculations.
Contributions. In this paper, we prove (Subsection 3.1) that a simple modification of the common scale functions continues to enjoy the preservation of the constraint under insertion property. The construction uses a piecewise definition in which we keep the scale function for and use the best linear approximation of the scale function at (i.e., the function whose graph is the tangent line to the graph of the scale function at ) for . Our approach is motivated by some brief theory (Section 2), from which we conclude that decent scale functions must be differentiable, and from which we deduce an explicit criterion for verifying the decency of a candidate scale function. As a consequence we analyze the case of polynomial scale functions (Subsection 3.2). We conclude with some empirical results in Section 4.
Previous work. For some background on other methods for computing quantiles in an online fashion, we refer the reader to (Dunning and Ertl, 2019, 1.1), in particular the Qdigest of (Shrivastava et al., 2004), and the works of (Munro and Paterson, 1980), (Chen et al., 2000), and (Greenwald et al., 2001)
. The momentbased quantile sketch has recently emerged as another compact data structure for quantile estimation
(Gan et al., 2018).2 Generalities
2.1 Definitions
An ordered set of clusters on a set of points in is called a digest with respect to a scale function if every cluster has unit weight or satisfies (Dunning and Ertl, 2019, §2.1). The quantity is called the size of the cluster. We will always require to be nondecreasing and piecewise differentiable.
We will be interested in the operation of inserting a collection of samples into a given set ; denote the result by . The notation does not specify where was inserted. We say a scale function accepts insertions (or is insertionaccepting) if given any digest with respect to , every cluster continues to have size less than or equal to when its quantile range is calculated in .
As the condition indeed implies a scale for , it is natural to restrict our attention to insertionaccepting scale functions with the property that is again insertionaccepting for any . We call such insertionaccepting scale functions decent.
If the insertion is to the left of a cluster spanning in , the cluster spans in , where is the proportion represented by in (i.e., . When the insertion is to the right, the cluster spans in .
2.2 Characterizations
Lemma 2.2.1.
The scale function is decent if and only if for all and all , we have for and for .
Proof.
Clearly the condition implies accepts insertions. Since the condition is preserved under scaling by , the condition implies accepts insertions, i.e., is decent.
If for some , we can find such that . An insertion into a set of clusters realizing the transformation would then violate the insertionaccepting condition for , and so decency implies the condition. ∎
Rearranging the inequality of the preceding lemma gives the following characterization of decent scale functions.
Corollary 2.2.2.
The scale function is decent if and only if for all , the functions and are nonincreasing on .
2.3 Properties
Lemma 2.3.1.
Decent scale functions form a convex cone: if are decent, then so is for any .
Lemma 2.3.2.
A decent scale function is continuous.
Proof.
Let be a point where continuity fails, and let denote the left and right hand limits of at . By piecewise continuity, we can find a pair of points such that . For an insertion pushing , but not , across the point of discontinuity, we have and so . Combining the inequalities produces a violation of the condition of Lemma 2.2.1. ∎
Proposition 2.3.3.
A decent scale function is differentiable.
Proof.
Let be a point where differentiability fails, suppose and both exist, and suppose . In this case we shift a centroid to the right; if the inequality were reversed, we would shift it to the left.
Let be a sequence approaching from below, and define and . Note that , and that . Before insertion the picture is
and after insertion it is
By choosing large enough, we can guarantee that , and therefore , violating the insertionaccepting property by Lemma 2.2.1. ∎
Remark 2.3.5.
The unnormalized forms of (i.e., without the term) are also decent. Our conditions in quantile space for the unnormalized forms imply decency in the finite data case for the normalized forms since the function is nondecreasing.
3 Computations
3.1 Piecewise defined functions
Gluing. Suppose and are decent scale functions, and . Let denote the function which is on and on . For to be decent, Proposition 2.3.3 implies that and must agree at , so one natural approach to gluing is to take a decent scale function (e.g., from the list in Remark 2.3.4), choose a point , and let be the best linear approximation to at , i.e., use the function:
To show is decent, by Lemma 2.2.2 it suffices to show and are nonincreasing on . Note if and are both greater than or equal to , the decency of implies the necessary nonincreasing property for (and similarly via if both are less than or equal to ), and similarly for and . Therefore it suffices to show the nonincreasing property for insertions moving from one side of to the other, i.e., for such that

(left to right) and , or

(right to left) and
For the functions we consider, the point is of particular interest since it minimizes the derivative , hence the cluster size for is as large as possible.
Notation and strategy. For ease of exposition, we establish common notation for the next three propositions (all concerning the gluing construction). For the case of shifting from left to right, we need to show is nonincreasing on the interval defined by and . For the case of shifting from right to left, we need to show is nonincreasing on the interval defined by and . We accomplish this by verifying and on the relevant domains. The decency results hold for positive scalar multiples of our scale functions as well (decency is a property of the determined ray), but we leave this implicit for notational simplicity.
Remark 3.1.1.
The construction can be modified in the obvious way to reverse the emphasis on the tails, i.e., using a nonlinear scale function on and the linear function describing its tangent line at for , but we do not explicitly state this variant in our results. The variant with higher accuracy near is reminiscent of a high dynamic range histogram, though the digest error is still bounded in terms of the quantile rather than the value of the observation itself.
Proposition 3.1.2.
For any , the scale function
is decent.
Proof.
We have
and therefore:
from which it follows that is equivalent to
Since and (as ), the left hand side is greater than or equal to . Since , the desired inequality follows.
We calculate:
from which it follows that is equivalent to
Since and , the left hand side is greater than or equal to , which is greater than the right hand side since . ∎
Proposition 3.1.3.
For any , the scale function
is decent.
Proof.
We calculate
and so
Therefore if and only if . Since and , the desired inequality follows.
For the other case,
and so when . We have and and so the result follows. ∎
Proposition 3.1.4.
For any , the scale function
is decent.
For any , the scale function
is decent.
Proof.
First we deal with the case the split point is greater than . We have
and so
Since , we have and hence as desired.
For insertions on the other side, we have
and so
Then is equivalent to . Since , we have and hence as needed.
In the case the split point is less than , we have
and therefore
(Note the limit of at exists.) For the first branch, implies , and , so for these . For the other branch, implies , so . Therefore and so for these as well.
Next we have
and so
(Note the limit of at exists.) For the first branch, implies and so for these . For the other branch, is equivalent to . Since , we have . Multiplying this inequality by and using gives the inequality we need. ∎
3.2 Polynomials
Proposition 3.2.1.
For any , the scale function is decent.
Proof.
We need to show, for any , that and are nonincreasing on the domain . Since
we calculate:
Now implies and so . Since , is decreasing, so is negative on , so is decreasing on this domain, as desired.
As for , we have
and so
Now and is decreasing, so too is negative on , so is decreasing on this domain, as desired. ∎
More generally we have the following.
Proposition 3.2.2.
For any , there exists such that for , the scale function is decent.
Proof.
We find conditions on guaranteeing that and are nonincreasing on the domain , for any . We have:
Now , where is a polynomial divisible by and with no dependence. Hence is divisible by (say ) and we can write
Now is a polynomial in , in particular has a maximum on . Choosing larger than implies as desired, so we can choose to be anything larger than (which depends only on ).
The analysis of is somewhat simpler. We calculate:
Now and , so the first term is nonpositive, and , so as desired. ∎
Combining various polynomials using the convex cone property (Lemma 2.3.1), we can generate lots of decent scale functions. The utility of this construction is somewhat unclear, as the linear term dominates more with larger . The decency of certain polynomials also opens the possibility of extending the gluing construction from linear approximations to higher degree Taylor polynomials.
4 Empirical results
This section summarizes the results of 100 runs of constructing a
digest on one million samples from a uniform distribution, for different scale functions. The main goal is to understand empirically the effect of the scale functions discussed in Section
3, especially the gluing construction applied to the familiar scale functions. In all cases we set the compression parameter and perform a compression (so the digest is “fully merged”) before calculating quantiles. We follow the conventions of (Dunning and Ertl, 2019) (see also Remark 2.3.4). For the piecewise defined functions, we glue at the point . For we use the size bounds of (Dunning, 2019b) and for we bound by the reciprocal of the slope of the line; for these differ by higher order terms in the normalizing/compression factors.The error is the absolute value of the difference between the cumulative distribution function evaluated at the estimate of quantile
and itself, and appears in the leftmost panel. The normalized error divides this quantity by and appears in the center panel. For the error plots, the whiskers range from the 5th to 95th percentile of the 100 runs, the boxes cover the interquartile range, the orange line is the median, and the horizontal axis is the following transformation of quantile space:Note the horizontal axes have the same interpretation in each figure, but the vertical axes vary. The rightmost panel is a histogram of centroid counts over the 100 runs. Implementations of the asymmetric scale functions and code for generating the data and plots are available at (Ross, 2019a) (a fork of (Dunning, 2018)).
4.1 AVL tree results
This subsection compares the different scale functions for digests using the AVLTree variant in the Java implementation (Dunning, 2018).
Discussion. In all cases the glued variant of has the error profile of for and that of (linear function, uniform cluster sizes) for , as expected. The reduction in number of centroids is more dramatic for and than it is for due to the normalizing term appearing in the linear halves of and . This reduction describes, to first order, the memory savings of the asymmetric (glued) variant over the usual symmetric one. We have not investigated quantitatively the computational advantage, but roughly speaking, half (when gluing at ) of the transcendental scale function evaluations are replaced by evaluation of a simple linear function.
4.2 Merging digest results
This subsection compares the different scale functions for digests using the MergingDigest variant in the Java implementation (Dunning, 2018). We have made two minor changes to the main implementation in (Ross, 2019a)
. First, we set “useAlternatingSort” to false, so that we do not alternate between upward and downward merge passes. Alternating seems to interact poorly with asymmetric scale functions; when set to true, the digests using asymmetric scale functions have too few centroids. Second, we have added more padding to the underlying arrays; the amount of fudge required seems to depend on the number of samples processed.
Acknowledgments. It is a pleasure to thank engineering and management at SignalFx for their encouragement and support during the preparation of this paper, and to thank Matthew Pound for many interesting discussions on this topic.
References
 Beyer et al. (2016) Beyer B, Jones C, Petoff J, Murphy NR (2016). Site Reliability Engineering: How Google Runs Production Systems. ” O’Reilly Media, Inc.”.
 Chen et al. (2000) Chen F, Lambert D, Pinheiro JC (2000). “Incremental quantile estimation for massive tracking.” In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 516–522. ACM.
 Dunning (2018) Dunning T (2018). “The digest Library.” https://github.com/tdunning/tdigest/. [Online; accessed 8August2019].
 Dunning (2019a) Dunning T (2019a). “Conservation of the digest Scale Invariant.” arXiv preprint arXiv:1903.09919.
 Dunning (2019b) Dunning T (2019b). “The Size of a Digest.” arXiv preprint arXiv:1903.09921.
 Dunning and Ertl (2019) Dunning T, Ertl O (2019). “Computing extremely accurate quantiles using digests.” arXiv preprint arXiv:1902.04023.
 Gan et al. (2018) Gan E, Ding J, Tai KS, Sharan V, Bailis P (2018). “Momentbased quantile sketches for efficient high cardinality aggregation queries.” Proceedings of the VLDB Endowment, 11(11), 1647–1660.
 Greenwald et al. (2001) Greenwald M, Khanna S, et al. (2001). “Spaceefficient online computation of quantile summaries.” ACM SIGMOD Record, 30(2), 58–66.
 Munro and Paterson (1980) Munro JI, Paterson MS (1980). “Selection and sorting with limited storage.” Theoretical computer science, 12(3), 315–323.
 Ross (2019a) Ross J (2019a). “SignalFx fork of Ted Dunning’s digest Library.” https://github.com/signalfx/tdigest/tree/asymmetric/docs/asymmetric. [Online; accessed 13September2019].
 Ross (2019b) Ross J (2019b). “A Weighted Sampling Scheme for Distributed Traces.” Submitted.
 Shrivastava et al. (2004) Shrivastava N, Buragohain C, Agrawal D, Suri S (2004). “Medians and beyond: new aggregation techniques for sensor networks.” In Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 239–249. ACM.
 Sloss et al. (2017) Sloss BT, Dahlin M, Rau V, Beyer B (2017). “The Calculus of Service Availability.” Queue, 15(2), 40.
Comments
There are no comments yet.