Arbitrary order of convergence for Riesz fractional derivative via central difference method

08/09/2021
by   Pui Ho Lam, et al.
0

We propose a novel method to compute a finite difference stencil for Riesz derivative for artibitrary speed of convergence. This method is based on applying a pre-filter to the Grünwald-Letnikov type central difference stencil. The filter is obtained by solving for the inverse of a symmetric Vandemonde matrix and exploiting the relationship between the Taylor's series coefficients and fast Fourier transform. The filter costs O(N^2) operations to evaluate for O(h^N) of convergence, where h is the sampling distance. The higher convergence speed should more than offset the overhead with the requirement of the number of nodal points for a desired error tolerance significantly reduced. The benefit of progressive generation of the stencil coefficients for adaptive grid size for dynamic problems with the Grünwald-Letnikov type difference scheme is also kept because of the application of filtering. The higher convergence rate is verified through numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset