Application of Multi-Armed Bandits to Model-assisted designs for Dose-Finding Clinical Trials

01/14/2022
by   Masahiro Kojima, et al.
0

We consider applying multi-armed bandits to model-assisted designs for dose-finding clinical trials. Multi-armed bandits are very simple and powerful methods to determine actions to maximize a reward in a limited number of trials. Among the multi-armed bandits, we first consider the use of Thompson sampling which determines actions based on random samples from a posterior distribution. In the small sample size, as shown in dose-finding trials, because the tails of posterior distribution are heavier and random samples are too much variability, we also consider an application of regularized Thompson sampling and greedy algorithm. The greedy algorithm determines a dose based on a posterior mean. In addition, we also propose a method to determine a dose based on a posterior median. We evaluate the performance of our proposed designs for six scenarios via simulation studies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset