A Versatile SPH Modeling Framework for Coupled Microfluid-Powder Dynamics in Additive Manufacturing: Binder Jetting, Material Jetting, Directed Energy Deposition and Powder Bed

01/05/2022
by   Sebastian L. Fuchs, et al.
0

Many additive manufacturing (AM) technologies rely on powder feedstock, which is fused to form the final part either by melting or by chemical binding with subsequent sintering. In both cases, process stability and resulting part quality depend on dynamic interactions between powder particles and a fluid phase, i.e., molten metal or liquid binder. The present work proposes a versatile computational modeling framework for simulating such coupled microfluid-powder dynamics problems involving thermo-capillary flow and reversible phase transitions. In particular, a liquid and a gas phase are interacting with a solid phase that consists of a substrate and mobile powder particles while simultaneously considering temperature-dependent surface tension and wetting effects. In case of laser-metal interactions, the effect of rapid evaporation is incorporated through additional mechanical and thermal interface fluxes. All phase domains are spatially discretized using smoothed particle hydrodynamics. The method's Lagrangian nature is beneficial in the context of dynamically changing interface topologies. Special care is taken in the formulation of phase transitions, which is crucial for the robustness of the computational scheme. While the underlying model equations are of a very general nature, the proposed framework is especially suitable for the mesoscale modeling of various AM processes. To this end, the generality and robustness of the computational modeling framework is demonstrated by several application-motivated examples representing the specific AM processes binder jetting, material jetting, directed energy deposition, and powder bed fusion. Among others, it is shown how the dynamic impact of droplets in binder jetting or the evaporation-induced recoil pressure in powder bed fusion leads to powder motion, distortion of the powder packing structure, and powder particle ejection.

READ FULL TEXT

page 2

page 11

page 12

page 15

page 17

page 18

page 19

page 20

research
06/07/2022

Computational thermal multi-phase flow for metal additive manufacturing

Thermal multi-phase flow simulations are indispensable to understanding ...
research
01/14/2021

A Novel Physics-Based and Data-Supported Microstructure Model for Part-Scale Simulation of Ti-6Al-4V Selective Laser Melting

The elasto-plastic material behavior, material strength and failure mode...
research
04/18/2018

Critical Influences of Particle Size and Adhesion on the Powder Layer Uniformity in Metal Additive Manufacturing

The quality of powder layers, specifically their packing density and sur...
research
12/27/2020

A coupled finite volume and material point method for two-phase simulation of liquid-sediment and gas-sediment flows

Mixtures of fluids and granular sediments play an important role in many...

Please sign up or login with your details

Forgot password? Click here to reset