A Unified Joint Maximum Mean Discrepancy for Domain Adaptation

01/25/2021 ∙ by Wei Wang, et al. ∙ 0

Domain adaptation has received a lot of attention in recent years, and many algorithms have been proposed with impressive progress. However, it is still not fully explored concerning the joint probability distribution (P(X, Y)) distance for this problem, since its empirical estimation derived from the maximum mean discrepancy (joint maximum mean discrepancy, JMMD) will involve complex tensor-product operator that is hard to manipulate. To solve this issue, this paper theoretically derives a unified form of JMMD that is easy to optimize, and proves that the marginal, class conditional and weighted class conditional probability distribution distances are our special cases with different label kernels, among which the weighted class conditional one not only can realize feature alignment across domains in the category level, but also deal with imbalance dataset using the class prior probabilities. From the revealed unified JMMD, we illustrate that JMMD degrades the feature-label dependence (discriminability) that benefits to classification, and it is sensitive to the label distribution shift when the label kernel is the weighted class conditional one. Therefore, we leverage Hilbert Schmidt independence criterion and propose a novel MMD matrix to promote the dependence, and devise a novel label kernel that is robust to label distribution shift. Finally, we conduct extensive experiments on several cross-domain datasets to demonstrate the validity and effectiveness of the revealed theoretical results.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.