A Two-stage Multi-modal Affect Analysis Framework for Children with Autism Spectrum Disorder

06/17/2021 ∙ by Jicheng Li, et al. ∙ 0

Autism spectrum disorder (ASD) is a developmental disorder that influences the communication and social behavior of a person in a way that those in the spectrum have difficulty in perceiving other people's facial expressions, as well as presenting and communicating emotions and affect via their own faces and bodies. Some efforts have been made to predict and improve children with ASD's affect states in play therapy, a common method to improve children's social skills via play and games. However, many previous works only used pre-trained models on benchmark emotion datasets and failed to consider the distinction in emotion between typically developing children and children with autism. In this paper, we present an open-source two-stage multi-modal approach leveraging acoustic and visual cues to predict three main affect states of children with ASD's affect states (positive, negative, and neutral) in real-world play therapy scenarios, and achieved an overall accuracy of 72:40 This work presents a novel way to combine human expertise and machine intelligence for ASD affect recognition by proposing a two-stage schema.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 5

page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.