A review of distributed statistical inference

04/13/2023
by   Yuan Gao, et al.
0

The rapid emergence of massive datasets in various fields poses a serious challenge to traditional statistical methods. Meanwhile, it provides opportunities for researchers to develop novel algorithms. Inspired by the idea of divide-and-conquer, various distributed frameworks for statistical estimation and inference have been proposed. They were developed to deal with large-scale statistical optimization problems. This paper aims to provide a comprehensive review for related literature. It includes parametric models, nonparametric models, and other frequently used models. Their key ideas and theoretical properties are summarized. The trade-off between communication cost and estimate precision together with other concerns are discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset