A Greedy Algorithm to Cluster Specialists

09/13/2016
by   Sébastien Arnold, et al.
0

Several recent deep neural networks experiments leverage the generalist-specialist paradigm for classification. However, no formal study compared the performance of different clustering algorithms for class assignment. In this paper we perform such a study, suggest slight modifications to the clustering procedures, and propose a novel algorithm designed to optimize the performance of of the specialist-generalist classification system. Our experiments on the CIFAR-10 and CIFAR-100 datasets allow us to investigate situations for varying number of classes on similar data. We find that our greedy pairs clustering algorithm consistently outperforms other alternatives, while the choice of the confusion matrix has little impact on the final performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro