3D Model-free Visual localization System from Essential Matrix under Local Planar Motion
Visual localization plays a critical role in the functionality of low-cost autonomous mobile robots. Current state-of-the-art approaches to accurate visual localization are 3D scene-specific, requiring additional computational and storage resources to construct a 3D scene model when facing a new environment. An alternative approach of directly using a database of 2D images for visual localization offers more flexibility. However, such methods currently suffer from limited localization accuracy. In this paper, we propose a robust and accurate multiple checking-based 3D model-free visual localization system that addresses the aforementioned issues. The core idea is to model the local planar motion characteristic of general ground-moving robots into both essential matrix estimation and triangulation stages to obtain two minimal solutions. By embedding the proposed minimal solutions into the multiple checking scheme, the proposed 3D model-free visual localization framework demonstrates high accuracy and robustness in both simulation and real-world experiments.
READ FULL TEXT