Zhe Lin

is this you? claim profile


Principal Scientist at Adobe Research

  • Multimodal Style Transfer via Graph Cuts

    An assumption widely used in recent neural style transfer methods is that image styles can be described by global statics of deep features like Gram or covariance matrices. Alternative approaches have represented styles by decomposing them into local pixel or neural patches. Despite the recent progress, most existing methods treat the semantic patterns of style image uniformly, resulting unpleasing results on complex styles. In this paper, we introduce a more flexible and general universal style transfer technique: multimodal style transfer (MST). MST explicitly considers the matching of semantic patterns in content and style images. Specifically, the style image features are clustered into sub-style components, which are matched with local content features under a graph cut formulation. A reconstruction network is trained to transfer each sub-style and render the final stylized result. Extensive experiments demonstrate the superior effectiveness, robustness and flexibility of MST.

    04/09/2019 ∙ by Yulun Zhang, et al. ∙ 24 share

    read it

  • Photo-Sketching: Inferring Contour Drawings from Images

    Edges, boundaries and contours are important subjects of study in both computer graphics and computer vision. On one hand, they are the 2D elements that convey 3D shapes, on the other hand, they are indicative of occlusion events and thus separation of objects or semantic concepts. In this paper, we aim to generate contour drawings, boundary-like drawings that capture the outline of the visual scene. Prior art often cast this problem as boundary detection. However, the set of visual cues presented in the boundary detection output are different from the ones in contour drawings, and also the artistic style is ignored. We address these issues by collecting a new dataset of contour drawings and proposing a learning-based method that resolves diversity in the annotation and, unlike boundary detectors, can work with imperfect alignment of the annotation and the actual ground truth. Our method surpasses previous methods quantitatively and qualitatively. Surprisingly, when our model fine-tunes on BSDS500, we achieve the state-of-the-art performance in salient boundary detection, suggesting contour drawing might be a scalable alternative to boundary annotation, which at the same time is easier and more interesting for annotators to draw.

    01/02/2019 ∙ by Mengtian Li, et al. ∙ 12 share

    read it

  • Foreground-aware Image Inpainting

    Existing image inpainting methods typically fill holes by borrowing information from surrounding image regions. They often produce unsatisfactory results when the holes overlap with or touch foreground objects due to lack of information about the actual extent of foreground and background regions within the holes. These scenarios, however, are very important in practice, especially for applications such as distracting object removal. To address the problem, we propose a foreground-aware image inpainting system that explicitly disentangles structure inference and content completion. Specifically, our model learns to predict the foreground contour first, and then inpaints the missing region using the predicted contour as guidance. We show that by this disentanglement, the contour completion model predicts reasonable contours of objects, and further substantially improves the performance of image inpainting. Experiments show that our method significantly outperforms existing methods and achieves superior inpainting results on challenging cases with complex compositions.

    01/17/2019 ∙ by Wei Xiong, et al. ∙ 12 share

    read it

  • Image Super-Resolution by Neural Texture Transfer

    Due to the significant information loss in low-resolution (LR) images, it has become extremely challenging to further advance the state-of-the-art of single image super-resolution (SISR). Reference-based super-resolution (RefSR), on the other hand, has proven to be promising in recovering high-resolution (HR) details when a reference (Ref) image with similar content as that of the LR input is given. However, the quality of RefSR can degrade severely when Ref is less similar. This paper aims to unleash the potential of RefSR by leveraging more texture details from Ref images with stronger robustness even when irrelevant Ref images are provided. Inspired by the recent work on image stylization, we formulate the RefSR problem as neural texture transfer. We design an end-to-end deep model which enriches HR details by adaptively transferring the texture from Ref images according to their textural similarity. Instead of matching content in the raw pixel space as done by previous methods, our key contribution is a multi-level matching conducted in the neural space. This matching scheme facilitates multi-scale neural transfer that allows the model to benefit more from those semantically related Ref patches, and gracefully degrade to SISR performance on the least relevant Ref inputs. We build a benchmark dataset for the general research of RefSR, which contains Ref images paired with LR inputs with varying levels of similarity. Both quantitative and qualitative evaluations demonstrate the superiority of our method over state-of-the-art.

    03/03/2019 ∙ by Zhifei Zhang, et al. ∙ 12 share

    read it

  • Expressing Visual Relationships via Language

    Describing images with text is a fundamental problem in vision-language research. Current studies in this domain mostly focus on single image captioning. However, in various real applications (e.g., image editing, difference interpretation, and retrieval), generating relational captions for two images, can also be very useful. This important problem has not been explored mostly due to lack of datasets and effective models. To push forward the research in this direction, we first introduce a new language-guided image editing dataset that contains a large number of real image pairs with corresponding editing instructions. We then propose a new relational speaker model based on an encoder-decoder architecture with static relational attention and sequential multi-head attention. We also extend the model with dynamic relational attention, which calculates visual alignment while decoding. Our models are evaluated on our newly collected and two public datasets consisting of image pairs annotated with relationship sentences. Experimental results, based on both automatic and human evaluation, demonstrate that our model outperforms all baselines and existing methods on all the datasets.

    06/18/2019 ∙ by Hao Tan, et al. ∙ 8 share

    read it

  • Concept Mask: Large-Scale Segmentation from Semantic Concepts

    Existing works on semantic segmentation typically consider a small number of labels, ranging from tens to a few hundreds. With a large number of labels, training and evaluation of such task become extremely challenging due to correlation between labels and lack of datasets with complete annotations. We formulate semantic segmentation as a problem of image segmentation given a semantic concept, and propose a novel system which can potentially handle an unlimited number of concepts, including objects, parts, stuff, and attributes. We achieve this using a weakly and semi-supervised framework leveraging multiple datasets with different levels of supervision. We first train a deep neural network on a 6M stock image dataset with only image-level labels to learn visual-semantic embedding on 18K concepts. Then, we refine and extend the embedding network to predict an attention map, using a curated dataset with bounding box annotations on 750 concepts. Finally, we train an attention-driven class agnostic segmentation network using an 80-category fully annotated dataset. We perform extensive experiments to validate that the proposed system performs competitively to the state of the art on fully supervised concepts, and is capable of producing accurate segmentations for weakly learned and unseen concepts.

    08/18/2018 ∙ by Yufei Wang, et al. ∙ 4 share

    read it

  • Image Inpainting using Multi-Scale Feature Image Translation

    We study the task of image inpainting, which is to fill in the missing region of an incomplete image with plausible contents. To this end, we propose a learning-based approach to generate visually coherent completion given a high-resolution image with missing components. In order to overcome the difficulty to directly learn the distribution of high-dimensional image data, we divide the task into initialization and texture-refinement as two separate steps and model each step with a deep neural network. We also use simple heuristics to guide transferring of textures from boundary to the hole. We show that, by using such techniques, inpainting reduces to the problem of learning two image-feature translation functions of much smaller dimensionality. We evaluate our method on several public datasets and show that we not only generate results of comparable or better visual quality, but are orders of magnitude faster than previous state-of-the-art methods.

    11/23/2017 ∙ by Yuhang Song, et al. ∙ 0 share

    read it

  • Predicting Scene Parsing and Motion Dynamics in the Future

    The ability of predicting the future is important for intelligent systems, e.g. autonomous vehicles and robots to plan early and make decisions accordingly. Future scene parsing and optical flow estimation are two key tasks that help agents better understand their environments as the former provides dense semantic information, i.e. what objects will be present and where they will appear, while the latter provides dense motion information, i.e. how the objects will move. In this paper, we propose a novel model to simultaneously predict scene parsing and optical flow in unobserved future video frames. To our best knowledge, this is the first attempt in jointly predicting scene parsing and motion dynamics. In particular, scene parsing enables structured motion prediction by decomposing optical flow into different groups while optical flow estimation brings reliable pixel-wise correspondence to scene parsing. By exploiting this mutually beneficial relationship, our model shows significantly better parsing and motion prediction results when compared to well-established baselines and individual prediction models on the large-scale Cityscapes dataset. In addition, we also demonstrate that our model can be used to predict the steering angle of the vehicles, which further verifies the ability of our model to learn latent representations of scene dynamics.

    11/09/2017 ∙ by Xiaojie Jin, et al. ∙ 0 share

    read it

  • Scene Parsing with Global Context Embedding

    We present a scene parsing method that utilizes global context information based on both the parametric and non- parametric models. Compared to previous methods that only exploit the local relationship between objects, we train a context network based on scene similarities to generate feature representations for global contexts. In addition, these learned features are utilized to generate global and spatial priors for explicit classes inference. We then design modules to embed the feature representations and the priors into the segmentation network as additional global context cues. We show that the proposed method can eliminate false positives that are not compatible with the global context representations. Experiments on both the MIT ADE20K and PASCAL Context datasets show that the proposed method performs favorably against existing methods.

    10/17/2017 ∙ by Wei-Chih Hung, et al. ∙ 0 share

    read it

  • FoveaNet: Perspective-aware Urban Scene Parsing

    Parsing urban scene images benefits many applications, especially self-driving. Most of the current solutions employ generic image parsing models that treat all scales and locations in the images equally and do not consider the geometry property of car-captured urban scene images. Thus, they suffer from heterogeneous object scales caused by perspective projection of cameras on actual scenes and inevitably encounter parsing failures on distant objects as well as other boundary and recognition errors. In this work, we propose a new FoveaNet model to fully exploit the perspective geometry of scene images and address the common failures of generic parsing models. FoveaNet estimates the perspective geometry of a scene image through a convolutional network which integrates supportive evidence from contextual objects within the image. Based on the perspective geometry information, FoveaNet "undoes" the camera perspective projection analyzing regions in the space of the actual scene, and thus provides much more reliable parsing results. Furthermore, to effectively address the recognition errors, FoveaNet introduces a new dense CRFs model that takes the perspective geometry as a prior potential. We evaluate FoveaNet on two urban scene parsing datasets, Cityspaces and CamVid, which demonstrates that FoveaNet can outperform all the well-established baselines and provide new state-of-the-art performance.

    08/08/2017 ∙ by Xin Li, et al. ∙ 0 share

    read it

  • Recognizing and Curating Photo Albums via Event-Specific Image Importance

    Automatic organization of personal photos is a problem with many real world ap- plications, and can be divided into two main tasks: recognizing the event type of the photo collection, and selecting interesting images from the collection. In this paper, we attempt to simultaneously solve both tasks: album-wise event recognition and image- wise importance prediction. We collected an album dataset with both event type labels and image importance labels, refined from an existing CUFED dataset. We propose a hybrid system consisting of three parts: A siamese network-based event-specific image importance prediction, a Convolutional Neural Network (CNN) that recognizes the event type, and a Long Short-Term Memory (LSTM)-based sequence level event recognizer. We propose an iterative updating procedure for event type and image importance score prediction. We experimentally verified that image importance score prediction and event type recognition can each help the performance of the other.

    07/19/2017 ∙ by Yufei Wang, et al. ∙ 0 share

    read it