Yujia Chen

is this you? claim profile

0

  • Masquer Hunter: Adversarial Occlusion-aware Face Detection

    Occluded face detection is a challenging detection task due to the large appearance variations incurred by various real-world occlusions. This paper introduces an Adversarial Occlusion-aware Face Detector (AOFD) by simultaneously detecting occluded faces and segmenting occluded areas. Specifically, we employ an adversarial training strategy to generate occlusion-like face features that are difficult for a face detector to recognize. Occlusion mask is predicted simultaneously while detecting occluded faces and the occluded area is utilized as an auxiliary instead of being regarded as a hindrance. Moreover, the supervisory signals from the segmentation branch will reversely affect the features, aiding in detecting heavily-occluded faces accordingly. Consequently, AOFD is able to find the faces with few exposed facial landmarks with very high confidences and keeps high detection accuracy even for masked faces. Extensive experiments demonstrate that AOFD not only significantly outperforms state-of-the-art methods on the MAFA occluded face detection dataset, but also achieves competitive detection accuracy on benchmark dataset for general face detection such as FDDB.

    09/15/2017 ∙ by Yujia Chen, et al. ∙ 0 share

    read it

  • GM-Net: Learning Features with More Efficiency

    Deep Convolutional Neural Networks (CNNs) are capable of learning unprecedentedly effective features from images. Some researchers have struggled to enhance the parameters' efficiency using grouped convolution. However, the relation between the optimal number of convolutional groups and the recognition performance remains an open problem. In this paper, we propose a series of Basic Units (BUs) and a two-level merging strategy to construct deep CNNs, referred to as a joint Grouped Merging Net (GM-Net), which can produce joint grouped and reused deep features while maintaining the feature discriminability for classification tasks. Our GM-Net architectures with the proposed BU_A (dense connection) and BU_B (straight mapping) lead to significant reduction in the number of network parameters and obtain performance improvement in image classification tasks. Extensive experiments are conducted to validate the superior performance of the GM-Net than the state-of-the-arts on the benchmark datasets, e.g., MNIST, CIFAR-10, CIFAR-100 and SVHN.

    06/21/2017 ∙ by Yujia Chen, et al. ∙ 0 share

    read it

  • Reconstruction-Aware Imaging System Ranking by use of a Sparsity-Driven Numerical Observer Enabled by Variational Bayesian Inference

    It is widely accepted that optimization of imaging system performance should be guided by task-based measures of image quality (IQ). It has been advocated that imaging hardware or data-acquisition designs should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the measurement noise and class of objects to be imaged, without consideration of the reconstruction method. In practice, accurate and tractable models of the complete object statistics are often difficult to determine. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and sparse image reconstruction are innately coupled technologies. In this work, a sparsity-driven observer (SDO) that can be employed to optimize hardware by use of a stochastic object model describing object sparsity is described and investigated. The SDO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute the SDO test statistic, computational tools developed recently for variational Bayesian inference with sparse linear models are adopted. The use of the SDO to rank data-acquisition designs in a stylized example as motivated by magnetic resonance imaging (MRI) is demonstrated. This study reveals that the SDO can produce rankings that are consistent with visual assessments of the reconstructed images but different from those produced by use of the traditionally employed Hotelling observer (HO).

    05/14/2019 ∙ by Yujia Chen, et al. ∙ 0 share

    read it