Weiming Dong

is this you? claim profile

0

  • Incremental Concept Learning via Online Generative Memory Recall

    The ability to learn more and more concepts over time from incrementally arriving data is essential for the development of a life-long learning system. However, deep neural networks often suffer from forgetting previously learned concepts when continually learning new concepts, which is known as catastrophic forgetting problem. The main reason for catastrophic forgetting is that the past concept data is not available and neural weights are changed during incrementally learning new concepts. In this paper, we propose a pseudo-rehearsal based class incremental learning approach to make neural networks capable of continually learning new concepts. We use a conditional generative adversarial network to consolidate old concepts memory and recall pseudo samples during learning new concepts and a balanced online memory recall strategy is to maximally maintain old memories. And we design a comprehensible incremental concept learning network as well as a concept contrastive loss to alleviate the magnitude of neural weights change. We evaluate the proposed approach on MNIST, Fashion-MNIST and SVHN datasets and compare with other rehearsal based approaches. The extensive experiments demonstrate the effectiveness of our approach.

    07/05/2019 ∙ by Huaiyu Li, et al. ∙ 5 share

    read it

  • Image Retargeting by Content-Aware Synthesis

    Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them. In this paper, we design a new framework based on content-aware synthesis to enhance content-aware image retargeting. By detecting the textural regions in an image, the textural image content can be synthesized rather than simply distorted or cropped. This method enables the manipulation of textural & non-textural regions with different strategy since they have different natures. We propose to retarget the textural regions by content-aware synthesis and non-textural regions by fast multi-operators. To achieve practical retargeting applications for general images, we develop an automatic and fast texture detection method that can detect multiple disjoint textural regions. We adjust the saliency of the image according to the features of the textural regions. To validate the proposed method, comparisons with state-of-the-art image targeting techniques and a user study were conducted. Convincing visual results are shown to demonstrate the effectiveness of the proposed method.

    03/26/2014 ∙ by Weiming Dong, et al. ∙ 0 share

    read it

  • Inverse Procedural Modeling of Facade Layouts

    In this paper, we address the following research problem: How can we generate a meaningful split grammar that explains a given facade layout? To evaluate if a grammar is meaningful, we propose a cost function based on the description length and minimize this cost using an approximate dynamic programming framework. Our evaluation indicates that our framework extracts meaningful split grammars that are competitive with those of expert users, while some users and all competing automatic solutions are less successful.

    08/02/2013 ∙ by Fuzhang Wu, et al. ∙ 0 share

    read it

  • Image Retargetability

    Real-world applications could benefit from the ability to automatically retarget an image to different aspect ratios and resolutions, while preserving its visually and semantically important content. However, not all images can be equally well processed that way. In this work, we introduce the notion of image retargetability to describe how well a particular image can be handled by content-aware image retargeting. We propose to learn a deep convolutional neural network to rank photo retargetability in which the relative ranking of photo retargetability is directly modeled in the loss function. Our model incorporates joint learning of meaningful photographic attributes and image content information which can help regularize the complicated retargetability rating problem. To train and analyze this model, we have collected a database which contains retargetability scores and meaningful image attributes assigned by six expert raters. Experiments demonstrate that our unified model can generate retargetability rankings that are highly consistent with human labels. To further validate our model, we show applications of image retargetability in retargeting method selection, retargeting method assessment and photo collage generation.

    02/12/2018 ∙ by Fan Tang, et al. ∙ 0 share

    read it

  • "Ge Shu Zhi Zhi": Towards Deep Understanding about Worlds

    "Ge She Zhi Zhi" is a novel saying in Chinese, stated as "To investigate things from the underlying principle(s) and to acquire knowledge in the form of mathematical representations". The saying is adopted and modified based on the ideas from the Eastern and Western philosophers. This position paper discusses the saying in the background of artificial intelligence (AI). Some related subjects, such as the ultimate goals of AI and two levels of knowledge representations, are discussed from the perspective of machine learning. A case study on objective evaluations over multi attributes, a typical problem in the filed of social computing, is given to support the saying for wide applications. A methodology of meta rules is proposed for examining the objectiveness of the evaluations. The possible problems of the saying are also presented.

    12/19/2018 ∙ by Baogang Hu, et al. ∙ 0 share

    read it

  • LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning

    In this work, we propose a novel meta-learning approach for few-shot classification, which learns transferable prior knowledge across tasks and directly produces network parameters for similar unseen tasks with training samples. Our approach, called LGM-Net, includes two key modules, namely, TargetNet and MetaNet. The TargetNet module is a neural network for solving a specific task and the MetaNet module aims at learning to generate functional weights for TargetNet by observing training samples. We also present an intertask normalization strategy for the training process to leverage common information shared across different tasks. The experimental results on Omniglot and miniImageNet datasets demonstrate that LGM-Net can effectively adapt to similar unseen tasks and achieve competitive performance, and the results on synthetic datasets show that transferable prior knowledge is learned by the MetaNet module via mapping training data to functional weights. LGM-Net enables fast learning and adaptation since no further tuning steps are required compared to other meta-learning approaches.

    05/15/2019 ∙ by Huaiyu Li, et al. ∙ 0 share

    read it