Remi Tachet des Combes

is this you? claim profile


  • An Empirical Study of Example Forgetting during Deep Neural Network Learning

    Inspired by the phenomenon of catastrophic forgetting, we investigate the learning dynamics of neural networks as they train on single classification tasks. Our goal is to understand whether a related phenomenon occurs when data does not undergo a clear distributional shift. We define a `forgetting event' to have occurred when an individual training example transitions from being classified correctly to incorrectly over the course of learning. Across several benchmark data sets, we find that: (i) certain examples are forgotten with high frequency, and some not at all; (ii) a data set's (un)forgettable examples generalize across neural architectures; and (iii) based on forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.

    12/12/2018 ∙ by Mariya Toneva, et al. ∙ 14 share

    read it

  • Counting to Explore and Generalize in Text-based Games

    We propose a recurrent RL agent with an episodic exploration mechanism that helps discovering good policies in text-based game environments. We show promising results on a set of generated text-based games of varying difficulty where the goal is to collect a coin located at the end of a chain of rooms. In contrast to previous text-based RL approaches, we observe that our agent learns policies that generalize to unseen games of greater difficulty.

    06/29/2018 ∙ by Xingdi Yuan, et al. ∙ 0 share

    read it

  • Learning Invariances for Policy Generalization

    While recent progress has spawned very powerful machine learning systems, those agents remain extremely specialized and fail to transfer the knowledge they gain to similar yet unseen tasks. In this paper, we study a simple reinforcement learning problem and focus on learning policies that encode the proper invariances for generalization to different settings. We evaluate three potential methods for policy generalization: data augmentation, meta-learning and adversarial training. We find our data augmentation method to be effective, and study the potential of meta-learning and adversarial learning as alternative task-agnostic approaches. Keywords: reinforcement learning, generalization, data augmentation, meta-learning, adversarial learning.

    09/07/2018 ∙ by Remi Tachet des Combes, et al. ∙ 0 share

    read it

  • On the Learning Dynamics of Deep Neural Networks

    While a lot of progress has been made in recent years, the dynamics of learning in deep nonlinear neural networks remain to this day largely misunderstood. In this work, we study the case of binary classification and prove various properties of learning in such networks under strong assumptions such as linear separability of the data. Extending existing results from the linear case, we confirm empirical observations by proving that the classification error also follows a sigmoidal shape in nonlinear architectures. We show that given proper initialization, learning expounds parallel independent modes and that certain regions of parameter space might lead to failed training. We also demonstrate that input norm and features' frequency in the dataset lead to distinct convergence speeds which might shed some light on the generalization capabilities of deep neural networks. We provide a comparison between the dynamics of learning with cross-entropy and hinge losses, which could prove useful to understand recent progress in the training of generative adversarial networks. Finally, we identify a phenomenon that we baptize gradient starvation where the most frequent features in a dataset prevent the learning of other less frequent but equally informative features.

    09/18/2018 ∙ by Remi Tachet des Combes, et al. ∙ 0 share

    read it

  • On Learning Invariant Representation for Domain Adaptation

    Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample (Fig. 1) exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift. Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations. Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guiding the future design of domain adaptation and representation learning algorithms.

    01/27/2019 ∙ by Han Zhao, et al. ∙ 0 share

    read it