Qi Tian

is this you? claim profile

0 followers

Full Professor in the Department of Computer Science, the University of Texas at San Antonio (UTSA)

  • CARS: Continuous Evolution for Efficient Neural Architecture Search

    Searching techniques in most of existing neural architecture search (NAS) algorithms are mainly dominated by differentiable methods for the efficiency reason. In contrast, we develop an efficient continuous evolutionary approach for searching neural networks. Architectures in the population which share parameters within one supernet in the latest iteration will be tuned over the training dataset with a few epochs. The searching in the next evolution iteration will directly inherit both the supernet and the population, which accelerates the optimal network generation. The non-dominated sorting strategy is further applied to preserve only results on the Pareto front for accurately updating the supernet. Several neural networks with different model sizes and performance will be produced after the continuous search with only 0.4 GPU days. As a result, our framework provides a series of networks with the number of parameters ranging from 3.7M to 5.1M under mobile settings. These networks surpass those produced by the state-of-the-art methods on the benchmark ImageNet dataset.

    09/11/2019 ∙ by Zhaohui Yang, et al. ∙ 17 share

    read it

  • Adaptive Graph Representation Learning for Video Person Re-identification

    Recent years have witnessed a great development of deep learning based video person re-identification (Re-ID). A key factor for video person Re-ID is how to effectively construct discriminative video feature representations for the robustness to many complicated situations like occlusions. Recent part-based approaches employ spatial and temporal attention to extract the representative local features. While the correlations between the parts are ignored in the previous methods, to leverage the relations of different parts, we propose an innovative adaptive graph representation learning scheme for video person Re-ID, which enables the contextual interactions between the relevant regional features. Specifically, we exploit pose alignment connection and feature affinity connection to construct an adaptive structure-aware adjacency graph, which models the intrinsic relations between graph nodes. We perform feature propagation on the adjacency graph to refine the original regional features iteratively, the neighbor nodes information is taken into account for part feature representation. To learn the compact and discriminative representations, we further propose a novel temporal resolution-aware regularization, which enforces the consistency among different temporal resolutions for the same identities. We conduct extensive evaluations on four benchmarks, i.e. iLIDS-VID, PRID2011, MARS, and DukeMTMC-VideoReID, the experimental results achieve the competitive performance which demonstrates the effectiveness of our proposed method.

    09/05/2019 ∙ by Yiming Wu, et al. ∙ 16 share

    read it

  • Data-Free Learning of Student Networks

    Learning portable neural networks is very essential for computer vision for the purpose that pre-trained heavy deep models can be well applied on edge devices such as mobile phones and micro sensors. Most existing deep neural network compression and speed-up methods are very effective for training compact deep models, when we can directly access the training dataset. However, training data for the given deep network are often unavailable due to some practice problems (e.g. privacy, legal issue, and transmission), and the architecture of the given network are also unknown except some interfaces. To this end, we propose a novel framework for training efficient deep neural networks by exploiting generative adversarial networks (GANs). To be specific, the pre-trained teacher networks are regarded as a fixed discriminator and the generator is utilized for derivating training samples which can obtain the maximum response on the discriminator. Then, an efficient network with smaller model size and computational complexity is trained using the generated data and the teacher network, simultaneously. Efficient student networks learned using the proposed Data-Free Learning (DFL) method achieve 92.22 accuracies without any training data on the CIFAR-10 and CIFAR-100 datasets, respectively. Meanwhile, our student network obtains an 80.56 CelebA benchmark.

    04/02/2019 ∙ by Hanting Chen, et al. ∙ 10 share

    read it

  • Multimodal Unified Attention Networks for Vision-and-Language Interactions

    Learning an effective attention mechanism for multimodal data is important in many vision-and-language tasks that require a synergic understanding of both the visual and textual contents. Existing state-of-the-art approaches use co-attention models to associate each visual object (e.g., image region) with each textual object (e.g., query word). Despite the success of these co-attention models, they only model inter-modal interactions while neglecting intra-modal interactions. Here we propose a general `unified attention' model that simultaneously captures the intra- and inter-modal interactions of multimodal features and outputs their corresponding attended representations. By stacking such unified attention blocks in depth, we obtain the deep Multimodal Unified Attention Network (MUAN), which can seamlessly be applied to the visual question answering (VQA) and visual grounding tasks. We evaluate our MUAN models on two VQA datasets and three visual grounding datasets, and the results show that MUAN achieves top-level performance on both tasks without bells and whistles.

    08/12/2019 ∙ by Zhou Yu, et al. ∙ 9 share

    read it

  • Data Priming Network for Automatic Check-Out

    Automatic Check-Out (ACO) receives increased interests in recent years. An important component of the ACO system is the visual item counting, which recognize the categories and counts of the items chosen by the customers. However, the training of such a system is challenged by the domain adaptation problem, in which the training data are images from isolated items while the testing images are for collections of items. Existing methods solve this problem with data augmentation using synthesized images, but the image synthesis leads to unreal images that affect the training process. In this paper, we propose a new data priming method to solve the domain adaptation problem. Specifically, we first use pre-augmentation data priming, in which we remove distracting background from the training images and select images with realistic view angles by the pose pruning method. In the post-augmentation step, we train a data priming network using detection and counting collaborative learning, and select more reliable images from testing data to train the final visual item tallying network. Experiments on the large scale Retail Product Checkout (RPC) dataset demonstrate the superiority of the proposed method, i.e., we achieve 80.51 of the baseline methods.

    04/10/2019 ∙ by Congcong Li, et al. ∙ 8 share

    read it

  • Harmonized Multimodal Learning with Gaussian Process Latent Variable Models

    Multimodal learning aims to discover the relationship between multiple modalities. It has become an important research topic due to extensive multimodal applications such as cross-modal retrieval. This paper attempts to address the modality heterogeneity problem based on Gaussian process latent variable models (GPLVMs) to represent multimodal data in a common space. Previous multimodal GPLVM extensions generally adopt individual learning schemes on latent representations and kernel hyperparameters, which ignore their intrinsic relationship. To exploit strong complementarity among different modalities and GPLVM components, we develop a novel learning scheme called Harmonization, where latent model parameters are jointly learned from each other. Beyond the correlation fitting or intra-modal structure preservation paradigms widely used in existing studies, the harmonization is derived in a model-driven manner to encourage the agreement between modality-specific GP kernels and the similarity of latent representations. We present a range of multimodal learning models by incorporating the harmonization mechanism into several representative GPLVM-based approaches. Experimental results on four benchmark datasets show that the proposed models outperform the strong baselines for cross-modal retrieval tasks, and that the harmonized multimodal learning method is superior in discovering semantically consistent latent representation.

    08/14/2019 ∙ by Guoli Song, et al. ∙ 8 share

    read it

  • Phase Collaborative Network for Multi-Phase Medical Imaging Segmentation

    Integrating multi-phase information is an effective way of boosting visual recognition. In this paper, we investigate this problem from the perspective of medical imaging analysis, in which two phases in CT scans known as arterial and venous are combined towards higher segmentation accuracy. To this end, we propose Phase Collaborative Network (PCN), an end-to-end network which contains both generative and discriminative modules to formulate phase-to-phase relations and data-to-label relations, respectively. Experiments are performed on several CT image segmentation datasets. PCN achieves superior performance with either two phases or only one phase available. Moreover, we empirically verify that the accuracy gain comes from the collaboration between phases.

    11/28/2018 ∙ by Huangjie Zheng, et al. ∙ 6 share

    read it

  • Two-Stream Video Classification with Cross-Modality Attention

    Fusing multi-modality information is known to be able to effectively bring significant improvement in video classification. However, the most popular method up to now is still simply fusing each stream's prediction scores at the last stage. A valid question is whether there exists a more effective method to fuse information cross modality. With the development of attention mechanism in natural language processing, there emerge many successful applications of attention in the field of computer vision. In this paper, we propose a cross-modality attention operation, which can obtain information from other modality in a more effective way than two-stream. Correspondingly we implement a compatible block named CMA block, which is a wrapper of our proposed attention operation. CMA can be plugged into many existing architectures. In the experiments, we comprehensively compare our method with two-stream and non-local models widely used in video classification. All experiments clearly demonstrate strong performance superiority by our proposed method. We also analyze the advantages of the CMA block by visualizing the attention map, which intuitively shows how the block helps the final prediction.

    08/01/2019 ∙ by Lu Chi, et al. ∙ 5 share

    read it

  • Super-pixel cloud detection using Hierarchical Fusion CNN

    Cloud detection plays a very important role in the process of remote sensing images. This paper designs a super-pixel level cloud detection method based on convolutional neural network (CNN) and deep forest. Firstly, remote sensing images are segmented into super-pixels through the combination of SLIC and SEEDS. Structured forests is carried out to compute edge probability of each pixel, based on which super-pixels are segmented more precisely. Segmented super-pixels compose a super-pixel level remote sensing database. Though cloud detection is essentially a binary classification problem, our database is labeled into four categories: thick cloud, cirrus cloud, building and other culture, to improve the generalization ability of our proposed models. Secondly, super-pixel level database is used to train our cloud detection models based on CNN and deep forest. Considering super-pixel level remote sensing images contain less semantic information compared with general object classification database, we propose a Hierarchical Fusion CNN (HFCNN). It takes full advantage of low-level features like color and texture information and is more applicable to cloud detection task. In test phase, every super-pixel in remote sensing images is classified by our proposed models and then combined to recover final binary mask by our proposed distance metric, which is used to determine ambiguous super-pixels. Experimental results show that, compared with conventional methods, HFCNN can achieve better precision and recall.

    10/19/2018 ∙ by Han Liu, et al. ∙ 4 share

    read it

  • Zigzag Learning for Weakly Supervised Object Detection

    This paper addresses weakly supervised object detection with only image-level supervision at training stage. Previous approaches train detection models with entire images all at once, making the models prone to being trapped in sub-optimums due to the introduced false positive examples. Unlike them, we propose a zigzag learning strategy to simultaneously discover reliable object instances and prevent the model from overfitting initial seeds. Towards this goal, we first develop a criterion named mean Energy Accumulation Scores (mEAS) to automatically measure and rank localization difficulty of an image containing the target object, and accordingly learn the detector progressively by feeding examples with increasing difficulty. In this way, the model can be well prepared by training on easy examples for learning from more difficult ones and thus gain a stronger detection ability more efficiently. Furthermore, we introduce a novel masking regularization strategy over the high level convolutional feature maps to avoid overfitting initial samples. These two modules formulate a zigzag learning process, where progressive learning endeavors to discover reliable object instances, and masking regularization increases the difficulty of finding object instances properly. We achieve 47.6 mAP on PASCAL VOC 2007, surpassing the state-of-the-arts by a large margin.

    04/25/2018 ∙ by Xiaopeng Zhang, et al. ∙ 2 share

    read it

  • Deep Modular Co-Attention Networks for Visual Question Answering

    Visual Question Answering (VQA) requires a fine-grained and simultaneous understanding of both the visual content of images and the textual content of questions. Therefore, designing an effective `co-attention' model to associate key words in questions with key objects in images is central to VQA performance. So far, most successful attempts at co-attention learning have been achieved by using shallow models, and deep co-attention models show little improvement over their shallow counterparts. In this paper, we propose a deep Modular Co-Attention Network (MCAN) that consists of Modular Co-Attention (MCA) layers cascaded in depth. Each MCA layer models the self-attention of questions and images, as well as the guided-attention of images jointly using a modular composition of two basic attention units. We quantitatively and qualitatively evaluate MCAN on the benchmark VQA-v2 dataset and conduct extensive ablation studies to explore the reasons behind MCAN's effectiveness. Experimental results demonstrate that MCAN significantly outperforms the previous state-of-the-art. Our best single model delivers 70.63% overall accuracy on the test-dev set. Code is available at https://github.com/MILVLG/mcan-vqa.

    06/25/2019 ∙ by Zhou Yu, et al. ∙ 2 share

    read it