Joint Channel Estimation and Feedback with Masked Token Transformers in Massive MIMO Systems

06/08/2023
by   Mingming Zhao, et al.
0

When the base station has downlink channel status information (CSI), the huge potential of large-scale multiple input multiple output (MIMO) in frequency division duplex (FDD) mode can be fully exploited. In this paper, we propose a deep-learning-based joint channel estimation and feedback framework to realize channel estimation and feedback in massive MIMO systems. Specifically, we use traditional channel design rather than end-to-end methods. Our model contains two networks. The first network is a channel estimation network, which adopts a double loss design, and can accurately estimate the full channel information while removing channel noises. The second network is a compression and feedback network. Inspired by the masked token transformer, we propose a learnable mask token method to obtain excellent estimation and compression performance. The extensive simulation results and ablation studies show that our method outperforms state-of-the-art channel estimation and feedback methods in both separate and joint tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro