Kai Han

is this you? claim profile

0 followers

  • Learning to Discover Novel Visual Categories via Deep Transfer Clustering

    We consider the problem of discovering novel object categories in an image collection. While these images are unlabelled, we also assume prior knowledge of related but different image classes. We use such prior knowledge to reduce the ambiguity of clustering, and improve the quality of the newly discovered classes. Our contributions are twofold. The first contribution is to extend Deep Embedded Clustering to a transfer learning setting; we also improve the algorithm by introducing a representation bottleneck, temporal ensembling, and consistency. The second contribution is a method to estimate the number of classes in the unlabelled data. This also transfers knowledge from the known classes, using them as probes to diagnose different choices for the number of classes in the unlabelled subset. We thoroughly evaluate our method, substantially outperforming state-of-the-art techniques in a large number of benchmarks, including ImageNet, OmniGlot, CIFAR-100, CIFAR-10, and SVHN.

    08/26/2019 ∙ by Kai Han, et al. ∙ 112 share

    read it

  • Unsupervised Image Matching and Object Discovery as Optimization

    Learning with complete or partial supervision is powerful but relies on ever-growing human annotation efforts. As a way to mitigate this serious problem, as well as to serve specific applications, unsupervised learning has emerged as an important field of research. In computer vision, unsupervised learning comes in various guises. We focus here on the unsupervised discovery and matching of object categories among images in a collection, following the work of Cho et al. 2015. We show that the original approach can be reformulated and solved as a proper optimization problem. Experiments on several benchmarks establish the merit of our approach.

    04/05/2019 ∙ by Huy V. Vo, et al. ∙ 40 share

    read it

  • Self-calibrating Deep Photometric Stereo Networks

    This paper proposes an uncalibrated photometric stereo method for non-Lambertian scenes based on deep learning. Unlike previous approaches that heavily rely on assumptions of specific reflectances and light source distributions, our method is able to determine both shape and light directions of a scene with unknown arbitrary reflectances observed under unknown varying light directions. To achieve this goal, we propose a two-stage deep learning architecture, called SDPS-Net, which can effectively take advantage of intermediate supervision, resulting in reduced learning difficulty compared to a single-stage model. Experiments on both synthetic and real datasets show that our proposed approach significantly outperforms previous uncalibrated photometric stereo methods.

    03/18/2019 ∙ by Guanying Chen, et al. ∙ 26 share

    read it

  • Learning Instance-wise Sparsity for Accelerating Deep Models

    Exploring deep convolutional neural networks of high efficiency and low memory usage is very essential for a wide variety of machine learning tasks. Most of existing approaches used to accelerate deep models by manipulating parameters or filters without data, e.g., pruning and decomposition. In contrast, we study this problem from a different perspective by respecting the difference between data. An instance-wise feature pruning is developed by identifying informative features for different instances. Specifically, by investigating a feature decay regularization, we expect intermediate feature maps of each instance in deep neural networks to be sparse while preserving the overall network performance. During online inference, subtle features of input images extracted by intermediate layers of a well-trained neural network can be eliminated to accelerate the subsequent calculations. We further take coefficient of variation as a measure to select the layers that are appropriate for acceleration. Extensive experiments conducted on benchmark datasets and networks demonstrate the effectiveness of the proposed method.

    07/27/2019 ∙ by Chuanjian Liu, et al. ∙ 5 share

    read it

  • Learning Transparent Object Matting

    This paper addresses the problem of image matting for transparent objects. Existing approaches often require tedious capturing procedures and long processing time, which limit their practical use. In this paper, we formulate transparent object matting as a refractive flow estimation problem, and propose a deep learning framework, called TOM-Net, for learning the refractive flow. Our framework comprises two parts, namely a multi-scale encoder-decoder network for producing a coarse prediction, and a residual network for refinement. At test time, TOM-Net takes a single image as input, and outputs a matte (consisting of an object mask, an attenuation mask and a refractive flow field) in a fast feed-forward pass. As no off-the-shelf dataset is available for transparent object matting, we create a large-scale synthetic dataset consisting of 178K images of transparent objects rendered in front of images sampled from the Microsoft COCO dataset. We also capture a real dataset consisting of 876 samples using 14 transparent objects and 60 background images. Besides, we show that our method can be easily extended to handle the cases where a trimap or a background image is available.Promising experimental results have been achieved on both synthetic and real data, which clearly demonstrate the effectiveness of our approach.

    07/25/2019 ∙ by Guanying Chen, et al. ∙ 4 share

    read it

  • Semi-Supervised Learning with Scarce Annotations

    While semi-supervised learning (SSL) algorithms provide an efficient way to make use of both labelled and unlabelled data, they generally struggle when the number of annotated samples is very small. In this work, we consider the problem of SSL multi-class classification with very few labelled instances. We introduce two key ideas. The first is a simple but effective one: we leverage the power of transfer learning among different tasks and self-supervision to initialize a good representation of the data without making use of any label. The second idea is a new algorithm for SSL that can exploit well such a pre-trained representation. The algorithm works by alternating two phases, one fitting the labelled points and one fitting the unlabelled ones, with carefully-controlled information flow between them. The benefits are greatly reducing overfitting of the labelled data and avoiding issue with balancing labelled and unlabelled losses during training. We show empirically that this method can successfully train competitive models with as few as 10 labelled data points per class. More in general, we show that the idea of bootstrapping features using self-supervised learning always improves SSL on standard benchmarks. We show that our algorithm works increasingly well compared to other methods when refining from other tasks or datasets.

    05/21/2019 ∙ by Sylvestre-Alvise Rebuffi, et al. ∙ 3 share

    read it

  • Attribute Aware Pooling for Pedestrian Attribute Recognition

    This paper expands the strength of deep convolutional neural networks (CNNs) to the pedestrian attribute recognition problem by devising a novel attribute aware pooling algorithm. Existing vanilla CNNs cannot be straightforwardly applied to handle multi-attribute data because of the larger label space as well as the attribute entanglement and correlations. We tackle these challenges that hampers the development of CNNs for multi-attribute classification by fully exploiting the correlation between different attributes. The multi-branch architecture is adopted for fucusing on attributes at different regions. Besides the prediction based on each branch itself, context information of each branch are employed for decision as well. The attribute aware pooling is developed to integrate both kinds of information. Therefore, attributes which are indistinct or tangled with others can be accurately recognized by exploiting the context information. Experiments on benchmark datasets demonstrate that the proposed pooling method appropriately explores and exploits the correlations between attributes for the pedestrian attribute recognition.

    07/27/2019 ∙ by Kai Han, et al. ∙ 3 share

    read it

  • Co-Evolutionary Compression for Unpaired Image Translation

    Generative adversarial networks (GANs) have been successfully used for considerable computer vision tasks, especially the image-to-image translation. However, generators in these networks are of complicated architectures with large number of parameters and huge computational complexities. Existing methods are mainly designed for compressing and speeding-up deep neural networks in the classification task, and cannot be directly applied on GANs for image translation, due to their different objectives and training procedures. To this end, we develop a novel co-evolutionary approach for reducing their memory usage and FLOPs simultaneously. In practice, generators for two image domains are encoded as two populations and synergistically optimized for investigating the most important convolution filters iteratively. Fitness of each individual is calculated using the number of parameters, a discriminator-aware regularization, and the cycle consistency. Extensive experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method for obtaining compact and effective generators.

    07/25/2019 ∙ by Han Shu, et al. ∙ 2 share

    read it

  • Full-Stack Filters to Build Minimum Viable CNNs

    Deep convolutional neural networks (CNNs) are usually over-parameterized, which cannot be easily deployed on edge devices such as mobile phones and smart cameras. Existing works used to decrease the number or size of requested convolution filters for a minimum viable CNN on edge devices. In contrast, this paper introduces filters that are full-stack and can be used to generate many more sub-filters. Weights of these sub-filters are inherited from full-stack filters with the help of different binary masks. Orthogonal constraints are applied over binary masks to decrease their correlation and promote the diversity of generated sub-filters. To preserve the same volume of output feature maps, we can naturally reduce the number of established filters by only maintaining a few full-stack filters and a set of binary masks. We also conduct theoretical analysis on the memory cost and an efficient implementation is introduced for the convolution of the proposed filters. Experiments on several benchmark datasets and CNN models demonstrate that the proposed method is able to construct minimum viable convolution networks of comparable performance.

    08/06/2019 ∙ by Kai Han, et al. ∙ 2 share

    read it

  • Autoencoder Feature Selector

    High-dimensional data in many areas such as computer vision and machine learning brings in computational and analytical difficulty. Feature selection which select a subset of features from original ones has been proven to be effective and efficient to deal with high-dimensional data. In this paper, we propose a novel AutoEncoder Feature Selector (AEFS) for unsupervised feature selection. AEFS is based on the autoencoder and the group lasso regularization. Compared to traditional feature selection methods, AEFS can select the most important features in spite of nonlinear and complex correlation among features. It can be viewed as a nonlinear extension of the linear method regularized self-representation (RSR) for unsupervised feature selection. In order to deal with noise and corruption, we also propose robust AEFS. An efficient iterative algorithm is designed for model optimization and experimental results verify the effectiveness and superiority of the proposed method.

    10/23/2017 ∙ by Kai Han, et al. ∙ 0 share

    read it

  • SCNet: Learning Semantic Correspondence

    This paper addresses the problem of establishing semantic correspondences between images depicting different instances of the same object or scene category. Previous approaches focus on either combining a spatial regularizer with hand-crafted features, or learning a correspondence model for appearance only. We propose instead a convolutional neural network architecture, called SCNet, for learning a geometrically plausible model for semantic correspondence. SCNet uses region proposals as matching primitives, and explicitly incorporates geometric consistency in its loss function. It is trained on image pairs obtained from the PASCAL VOC 2007 keypoint dataset, and a comparative evaluation on several standard benchmarks demonstrates that the proposed approach substantially outperforms both recent deep learning architectures and previous methods based on hand-crafted features.

    05/11/2017 ∙ by Kai Han, et al. ∙ 0 share

    read it