Hicham Janati

is this you? claim profile

0 followers

  • Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates

    Magnetoencephalography (MEG) and electroencephalogra-phy (EEG) are non-invasive modalities that measure the weak electromagnetic fields generated by neural activity. Inferring the location of the current sources that generated these magnetic fields is an ill-posed inverse problem known as source imaging. When considering a group study, a baseline approach consists in carrying out the estimation of these sources independently for each subject. The ill-posedness of each problem is typically addressed using sparsity promoting regularizations. A straightforward way to define a common pattern for these sources is then to average them. A more advanced alternative relies on a joint localization of sources for all subjects taken together, by enforcing some similarity across all estimated sources. An important advantage of this approach is that it consists in a single estimation in which all measurements are pooled together, making the inverse problem better posed. Such a joint estimation poses however a few challenges, notably the selection of a valid regularizer that can quantify such spatial similarities. We propose in this work a new procedure that can do so while taking into account the geometrical structure of the cortex. We call this procedure Minimum Wasserstein Estimates (MWE). The benefits of this model are twofold. First, joint inference allows to pool together the data of different brain geometries, accumulating more spatial information. Second, MWE are defined through Optimal Transport (OT) metrics which provide a tool to model spatial proximity between cortical sources of different subjects, hence not enforcing identical source location in the group. These benefits allow MWE to be more accurate than standard MEG source localization techniques. To support these claims, we perform source localization on realistic MEG simulations based on forward operators derived from MRI scans. On a visual task dataset, we demonstrate how MWE infer neural patterns similar to functional Magnetic Resonance Imaging (fMRI) maps.

    02/13/2019 ∙ by Hicham Janati, et al. ∙ 6 share

    read it

  • Wasserstein regularization for sparse multi-task regression

    Two important elements have driven recent innovation in the field of regression: sparsity-inducing regularization, to cope with high-dimensional problems; multi-task learning through joint parameter estimation, to augment the number of training samples. Both approaches complement each other in the sense that a joint estimation results in more samples, which are needed to estimate sparse models accurately, whereas sparsity promotes models that act on subsets of related variables. This idea has driven the proposal of block regularizers such as L1/Lq norms, which however effective, require that active regressors strictly overlap. In this paper, we propose a more flexible convex regularizer based on unbalanced optimal transport (OT) theory. That regularizer promotes parameters that are close, according to the OT geometry, which takes into account a prior geometric knowledge on the regressor variables. We derive an efficient algorithm based on a regularized formulation of optimal transport, which iterates through applications of Sinkhorn's algorithm along with coordinate descent iterations. The performance of our model is demonstrated on regular grids and complex triangulated geometries of the cortex with an application in neuroimaging.

    05/20/2018 ∙ by Hicham Janati, et al. ∙ 0 share

    read it