Charlotte Bunne

is this you? claim profile


  • Learning Generative Models across Incomparable Spaces

    Generative Adversarial Networks have shown remarkable success in learning a distribution that faithfully recovers a reference distribution in its entirety. However, in some cases, we may want to only learn some aspects (e.g., cluster or manifold structure), while modifying others (e.g., style, orientation or dimension). In this work, we propose an approach to learn generative models across such incomparable spaces, and demonstrate how to steer the learned distribution towards target properties. A key component of our model is the Gromov-Wasserstein distance, a notion of discrepancy that compares distributions relationally rather than absolutely. While this framework subsumes current generative models in identically reproducing distributions, its inherent flexibility allows application to tasks in manifold learning, relational learning and cross-domain learning.

    05/14/2019 ∙ by Charlotte Bunne, et al. ∙ 1 share

    read it

  • Studying Invariances of Trained Convolutional Neural Networks

    Convolutional Neural Networks (CNNs) define an exceptionally powerful class of models for image classification, but the theoretical background and the understanding of how invariances to certain transformations are learned is limited. In a large scale screening with images modified by different affine and nonaffine transformations of varying magnitude, we analyzed the behavior of the CNN architectures AlexNet and ResNet. If the magnitude of different transformations does not exceed a class- and transformation dependent threshold, both architectures show invariant behavior. In this work we furthermore introduce a new learnable module, the Invariant Transformer Net, which enables us to learn differentiable parameters for a set of affine transformations. This allows us to extract the space of transformations to which the CNN is invariant and its class prediction robust.

    03/15/2018 ∙ by Charlotte Bunne, et al. ∙ 0 share

    read it