Zeta Distribution and Transfer Learning Problem

06/23/2018 ∙ by Eray Özkural, et al. ∙ 0

We explore the relations between the zeta distribution and algorithmic information theory via a new model of the transfer learning problem. The program distribution is approximated by a zeta distribution with parameter near 1. We model the training sequence as a stochastic process. We analyze the upper temporal bound for learning a training sequence and its entropy rates, assuming an oracle for the transfer learning problem. We argue from empirical evidence that power-law models are suitable for natural processes. Four sequence models are proposed. Random typing model is like no-free lunch where transfer learning does not work. Zeta process independently samples programs from the zeta distribution. A model of common sub-programs inspired by genetics uses a database of sub-programs. An evolutionary zeta process samples mutations from Zeta distribution. The analysis of stochastic processes inspired by evolution suggest that AI may be feasible in nature, countering no-free lunch sort of arguments.

READ FULL TEXT

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.