Zero-shot Clinical Entity Recognition using ChatGPT

03/29/2023
by   Yan Hu, et al.
0

In this study, we investigated the potential of ChatGPT, a large language model developed by OpenAI, for the clinical named entity recognition task defined in the 2010 i2b2 challenge, in a zero-shot setting with two different prompt strategies. We compared its performance with GPT-3 in a similar zero-shot setting, as well as a fine-tuned BioClinicalBERT model using a set of synthetic clinical notes from MTSamples. Our findings revealed that ChatGPT outperformed GPT-3 in the zero-shot setting, with F1 scores of 0.418 (vs.0.250) and 0.620 (vs. 0.480) for exact- and relaxed-matching, respectively. Moreover, prompts affected ChatGPT's performance greatly, with relaxed-matching F1 scores of 0.628 vs.0.541 for two different prompt strategies. Although ChatGPT's performance was still lower than that of the supervised BioClinicalBERT model (i.e., relaxed-matching F1 scores of 0.628 vs. 0.870), our study demonstrates the great potential of ChatGPT for clinical NER tasks in a zero-shot setting, which is much more appealing as it does not require any annotation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset