Zero-pronoun Data Augmentation for Japanese-to-English Translation
For Japanese-to-English translation, zero pronouns in Japanese pose a challenge, since the model needs to infer and produce the corresponding pronoun in the target side of the English sentence. However, although fully resolving zero pronouns often needs discourse context, in some cases, the local context within a sentence gives clues to the inference of the zero pronoun. In this study, we propose a data augmentation method that provides additional training signals for the translation model to learn correlations between local context and zero pronouns. We show that the proposed method significantly improves the accuracy of zero pronoun translation with machine translation experiments in the conversational domain.
READ FULL TEXT