Zero-bias Deep Neural Network for Quickest RF Signal Surveillance

10/12/2021
by   Yongxin Liu, et al.
0

The Internet of Things (IoT) is reshaping modern society by allowing a decent number of RF devices to connect and share information through RF channels. However, such an open nature also brings obstacles to surveillance. For alleviation, a surveillance oracle, or a cognitive communication entity needs to identify and confirm the appearance of known or unknown signal sources in real-time. In this paper, we provide a deep learning framework for RF signal surveillance. Specifically, we jointly integrate the Deep Neural Networks (DNNs) and Quickest Detection (QD) to form a sequential signal surveillance scheme. We first analyze the latent space characteristic of neural network classification models, and then we leverage the response characteristics of DNN classifiers and propose a novel method to transform existing DNN classifiers into performance-assured binary abnormality detectors. In this way, we seamlessly integrate the DNNs with the parametric quickest detection. Finally, we propose an enhanced Elastic Weight Consolidation (EWC) algorithm with better numerical stability for DNNs in signal surveillance systems to evolve incrementally, we demonstrate that the zero-bias DNN is superior to regular DNN models considering incremental learning and decision fairness. We evaluated the proposed framework using real signal datasets and we believe this framework is helpful in developing a trustworthy IoT ecosystem.

READ FULL TEXT

page 3

page 7

research
04/08/2021

Zero-bias Deep Learning Enabled Quick and Reliable Abnormality Detection in IoT

Abnormality detection is essential to the performance of safety-critical...
research
02/20/2023

Two-Tier Multi-Rate Slotted ALOHA for OWC/RF-Based IoT Networks

We consider a massive Internet of Things (IoT) scenario where indoor IoT...
research
06/18/2020

An Investigation of the Weight Space for Version Control of Neural Networks

Deployed Deep Neural Networks (DNNs) are often trained further to improv...
research
09/21/2021

Digital Signal Processing Using Deep Neural Networks

Currently there is great interest in the utility of deep neural networks...
research
05/08/2021

Class-Incremental Learning for Wireless Device Identification in IoT

Deep Learning (DL) has been utilized pervasively in the Internet of Thin...
research
03/31/2022

Deep Learning for Spectral Filling in Radio Frequency Applications

Due to the Internet of Things (IoT) proliferation, Radio Frequency (RF) ...
research
05/20/2019

Transmitter Classification With Supervised Deep Learning

Hardware imperfections in RF transmitters introduce features that can be...

Please sign up or login with your details

Forgot password? Click here to reset