Zeon and Idem-Clifford Formulations of Hypergraph Problems

01/15/2022
by   Samuel Ewing, et al.
0

Zeon algebras have proven to be useful for enumerating structures in graphs, such as paths, trails, cycles, matchings, cliques, and independent sets. In contrast to an ordinary graph, in which each edge connects exactly two vertices, an edge (or, "hyperedge") can join any number of vertices in a hypergraph. In game theory, hypergraphs are called simple games. Hypergraphs have been used for problems in biology, chemistry, image processing, wireless networks, and more. In the current work, zeon ("nil-Clifford") and "idem-Clifford" graph-theoretic methods are generalized to hypergraphs. In particular, zeon and idem-Clifford methods are used to enumerate paths, trails, independent sets, cliques, and matchings in hypergraphs. An approach for finding minimum hypergraph transversals is developed, and zeon formulations of some open hypergraph problems are presented.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro