Winning Solution of the AIcrowd SBB Flatland Challenge 2019-2020

11/11/2021
by   Mugurel-Ionut Andreica, et al.
0

This report describes the main ideas of the solution which won the AIcrowd SBB Flatland Challenge 2019-2020, with a score of 99 average, 99 allotted time steps). The details of the task can be found on the competition's website. The solution consists of 2 major components: 1) A component which (re-)generates paths over a time-expanded graph for each agent 2) A component which updates the agent paths after a malfunction occurs, in order to try to preserve the same agent ordering of entering each cell as before the malfunction. The goal of this component is twofold: a) to (try to) avoid deadlocks b) to bring the system back to a consistent state (where each agent has a feasible path over the time-expanded graph). I am discussing both of these components, as well as a series of potentially promising, but unexplored ideas, below.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro