Wind models and cross-site interpolation for the refugee reception islands in Greece
In this study, the wind data series from five locations in Aegean Sea islands, the most active `hotspots' in terms of refugee influx during the Oct/2015 - Jan/2016 period, are investigated. The analysis of the three-per-site data series includes standard statistical analysis and parametric distributions, auto-correlation analysis, cross-correlation analysis between the sites, as well as various ARMA models for estimating the feasibility and accuracy of such spatio-temporal linear regressors for predictive analytics. Strong correlations are detected across specific sites and appropriately trained ARMA(7,5) models achieve 1-day look-ahead error (RMSE) of less than 1.9 km/h on average wind speed. The results show that such data-driven statistical approaches are extremely useful in identifying unexpected and sometimes counter-intuitive associations between the available spatial data nodes, which is very important when designing corresponding models for short-term forecasting of sea condition, especially average wave height and direction, which is in fact what defines the associated weather risk of crossing these passages in refugee influx patterns.
READ FULL TEXT